

Unitil Kingston Solar Project Tax Map R12, Lots 25 & 26 14 & 24 Towle Road Kingston, NH 03848

Prepared On: July 6, 2023 Revised September 1, 2023

Prepared for:

Unitil Energy Systems, Inc.

30 Energy Way Exeter, NH

TFM Job Number: 20025-00

Prepared by:

Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists

48 Constitution Drive, Bedford, NH 03110 **Tel:** (603) 472-4488 Fax: (603) 472-9747 www.tfmoran.com

Unitil Kingston Solar Project

Tax Map R12, Lots 25 & 26 14 & 24 Towle Road, Kingston, NH 03848 July 6, 2023 *Revised September 1, 2023*

Table of Contents

Alteration of Terrain Requirements

NHDES AoT Application & Checklist Copy of Check USGS Locus Map (Figure 1) Certification of Delivery to Municipality

Part 1 Project Narrative

Executive Summary Description of Project Storm Water Methodology Pre-Development & Post-Development Groundwater Recharge Stormwater Treatment Erosion Control Measures Temporary Erosion Control Measures Permanent Erosion Control Measures Flood Protection Conclusion Peak Rate Flows Treatment

Part 2 Site Information

USGS Map (Figure 1) Web GIS Printouts NHDES AoT Screening Layers NHDES Drinking & Groundwater Screening Layers NHDES Surface Water Impairments NHDES Designated River Check NHB Correspondence NRCS Soils Report Aerial Map (Figure 2) FEMA National Flood Hazard Layer FIRMette Site Photographs & Key Extreme Precipitation Table

Part 3 Groundwater and BMP Worksheets

Groundwater Recharge Volume (GRV) Calculation BMP Worksheet for Treatment Systems

Part 4 Pre-development Drainage Analysis

Pre-Development HydroCAD Calculations Diagram Area & Soil Listings Node Listing: 2-yr, 10-yr, and 50-yr (Per AoT & Kingston) Full Summary: 10-yr (per AoT)

Part 5 Post-Development Drainage Analysis

Post-Development HydroCAD Calculations Diagram Area & Soil Listings Node Listing: 2-yr, 10-yr, and 50-yr (Per AoT & Kingston) Full Summary: 10-yr (per AoT) Temporary Erosion Controls HydroCAD Calculations Diagram Area & Soil Listings Node Listing: 2-yr (Per AoT)

Part 6 Calculations

Riprap Calculations

Part 7 Infiltration Feasibility Report

Infiltration Feasibility Report

Part 8 Inspection and Maintenance Manual

Inspection & Maintenance Manual

Part 9 Drainage Plans

Drainage Plan (11"x17") Pre-Development – DA-01 Post-Development – DA-02

Color Coded Soils Plan (11"x17") Pre-Development – HSG-01 Post-Development – HSG-02

Slope Analysis Plan – Figure-01 (11"x17")

Pre-Development & Post-Development Drainage Plans (Full size in pocket)

ALTERATION OF TERRAIN PERMIT APPLICATION

Water Division/ Alteration of Terrain Bureau/ Land Resources Management Check the Status of your Application: <u>www.des.nh.gov/onestop</u>

RSA/ Rule: RSA 485-A:17, Env-Wq 1500

			File Nu	mber:		
Administrative	Administrative	Administrative	Check N	No.		
Use Only	Use Use Only Only		Amoun	t:		
			Initials:			
1. APPLICANT INFORMATION (INT	ENDED PERMIT HOLDER)					
Applicant Name: Unitil		Contact Name: Jacob D	usling, P.E.			
Email: dusling@unitil.com		Daytime Telephone: (60)3)-773-6529			
Mailing Address: 30 Energy Way						
Town/City: Exeter		S	State: NH	Zip Code: 03833		
2. APPLICANT'S AGENT INFORMAT	TION If none, check here:]				
Business Name: TFMoran, Inc.		Contact Name: Nichola	s Golon, P.E.			
Email: ngolon@tfmoran.com		Daytime Telephone: 60	Daytime Telephone: 603-472-4488			
Address: 48 Constitution Drive		·				
Town/City: Bedford		S	State: NH	Zip Code: 03110		
3. PROPERTY OWNER INFORMATI	ON (IF DIFFERENT FROM APPLICAN	NT)		-		
Applicant Name: 24 Towle Road R	ealty Trust & Richard Homan	Contact Name: Lynda D	evast & Richard H	oman		
Email:		Daytime Telephone:				
Mailing Address: 86 Rockingham F	Road & 14 Towle Road	·				
Town/City: Kinston		S	State: NH	Zip Code: 03848		
4. PROPERTY OWNER'S AGENT IN	FORMATION If none, check	k here:				
Business Name: TFMoran, Inc.		Contact Name: Nicholas Golon, P.E.				
Email: ngolon@tfmoran.com		Daytime Telephone: 603-472-4488				
Address: 48 Constitution Drive						
Town/City: Bedford		S	State: NH	Zip Code: 03110		
5. CONSULTANT INFORMATION	If none, check here:			-		
Engineering Firm: TFMoran, Inc.	Contact Name: Nicholas Golon, P.E.					
Email: ngolon@tfmoran.com	Daytime Telephone: 60	Daytime Telephone: 603-472-4488				
Address: 48 Constitution Drive						
Town/City: Bedford		S	State: NH	Zip Code: 03110		

NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

NHDES-W-01-003 6. PROJECT TYPE Excavation Only Residential Commercial Golf Course School Municipal Other: Utility Agricultural Land Conversion 7. PROJECT LOCATION INFORMATION Project Name: Unitil Kingston Solar Facility Street/Road Address: 14 & 24 Towle Road Town/City: Kingston County: Rockingham Block: Lot Number: 25 & 26 Unit: Tax Map: R12 State Plane Location Coordinates: 1138452, 145792 Latitude/Longitude Post-development, will the proposed project withdraw from or directly discharge to any of the following? If yes, identify the purpose. **Yes** 1. Stream or Wetland Withdrawal Discharge No 🛛 Purpose: 2. Man-made pond created by impounding a stream or wetland Yes Withdrawal Discharge Purpose: Withdrawal 3. Unlined pond dug into the water table Yes Discharge No No Purpose: Post-development, will the proposed project discharge to: • A surface water impaired for phosphorus and/or nitrogen? 🛛 No 🛛 Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen • A Class A surface water or Outstanding Resource Water? 🛛 No Yes - include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen • A lake or pond not covered previously? 🛛 No Yes - include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond Yes No No Is the project a High Load area? If yes, specify the type of high load land use or activity: Yes No No Is the project within a Water Supply Intake Protection Area (WSIPA)? No No Is the project within a Groundwater Protection Area (GPA)? Yes X Yes ∏ No Will the well setbacks identified in Env-Wq 1508.02 be met? Note: Guidance document titled "Using NHDES's OneStop WebGIS to Locate Protection Areas" is available online. For more details on the restrictions in these areas, read Chapter 3.1 in Volume 2 of the NH Stormwater Manual. Is any part of the property within the 100-year floodplain? No Yes If ves: Cut volume: _____ cubic feet within the 100-year floodplain Fill volume: cubic feet within the 100-year floodplain Project IS within ¼ mile of a designated river Name of River: Project is **NOT** within ¼ mile of a designated river Project IS within a Coastal/Great Bay Region community - include info required by Env-Wq 1503.08(I) if applicable Project is **NOT** within a Coastal/Great Bay Region community 8. BRIEF PROJECT DESCRIPTION (PLEASE DO NOT REPLY "SEE ATTACHED") Proposed Utility Photovoltaic Generating (PV) Facility with associated access and stormwater management areas 9. IF APPLICABLE, DESCRIBE ANY WORK STARTED PRIOR TO RECEIVING PERMIT N/A

NHDES-W-01-003

10. ADDITIONAL REQUIRED INFORMATION					
A. Date a copy of the application was sent to the	municipality as requ	uired by Env	-Wq 1503.05	(e) ¹ : <u>07/13/2023.</u>	
(Attach proof of delivery)					
B. Date a copy of the application was sent to the	local river advisory	committee i	f required by	Env-Wq 1503.05(e)²: <u>//</u> .	
(Attach proof of delivery)					
C. Type of plan required: 🗌 Land Conversion 🛛	Detailed Develop	ment 🗌 Ex	cavation, Gra	iding & Reclamation 🗌 Steep Slope	
D. Additional plans required: 🔀 Stormwater Dra	ainage & Hydrologic	Soil Groups	Source C	Control 🔲 Chloride Management	
E. Total area of disturbance: <u>1,276,919</u> square fe	eet				
 F. Additional impervious cover as a result of the p coverage). Total final impervious cover: <u>25,689</u> square fe 		re feet (use	the "-" symbo	ol to indicate a net reduction in impervious	
G. Total undisturbed cover: <u>298,310</u> square feet					
H. Number of lots proposed: <u>1</u>					
I. Total length of roadway: <u>0</u> linear feet					
J. Name(s) of receiving water(s): 0					
K. Identify all other NHDES permits required for t the required approval has been issued provide				application has been filed and is pending, or if proval letter number, as applicable.	
Type of Approval	Application	Filed?		Status	
	Application	neu:	Pending	If Issued:	
1. Water Supply Approval	🗌 Yes 🗌 No	⊠n/a		Permit number:	
2. Wetlands Permit	Yes 🗌 No	□n/A	\boxtimes	Permit number:	
3. Shoreland Permit	Yes No	⊠n/a		Permit number:	
4. UIC Registration	🗌 Yes 🗌 No	⊠n/a		Registration date:	
5. Large/Small Community Well Approval	Yes No	⊠N/A		Approval letter date:	
6. Large Groundwater Withdrawal Permit	Yes No	⊠n/a		Permit number:	
7. Other:	🗌 Yes 🛛 No			Permit number:	
L. List all species identified by the Natural Heritag <u>Turtle, & Spotted Turtle</u>	ge Bureau as threat	ened or end	angered or o	f concern: <u>Northern Black Racer, Blanding's</u>	
M. Using NHDES's Web GIS OneStop program (<u>www2.des.state.nh.us/gis/onestop/</u>), with the Surface Water Impairment layer turned on, list the impairments identified for each receiving water. If no pollutants are listed, enter "N/A." <u>N/A</u>					
N. Did the applicant/applicant's agent have a pre-application meeting with AOT staff? If yes, name of staff member:					
O. Will blasting of bedrock be required? Yes No If yes, estimated quantity of blast rock: cubic yards If yes, standard blasting BMP notes must be placed on the plans, available at: http://des.nh.gov/organization/commissioner/pip/publications/wd/documents/wd-10-12.pdf					
NOTE: If greater than 5,000 cubic yards of blas submitted to NHDES. Contact AOT staff for ad	-	ated, a grou	ndwater mor	nitoring program must be developed and	

ridge.mauck@des.nh.gov or (603) 271-2147 NHDES Alteration of Terrain Bureau, PO Box 95, Concord, NH 03303-0095

www.des.nh.gov

¹ Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the governing body of each municipality in which the project is proposed.

² Env-Wq 1503.05(c)(6), requires proof that a completed application form, checklist, plans and specifications, and all other supporting materials have been sent or delivered to the Local River Advisory Committee, if the project is within ¼ mile of a designated river.

11. CHECK ALL APPLICATION ATTACHMENTS THAT APPLY (SUBMIT WITH APPLICATION IN ORDER LISTED)
 LOOSE: Signed application form: des.nh.gov/organization/divisions/water/aot/index.htm (with attached proof(s) of delivery) ○ Check for the application fee: des.nh.gov/organization/divisions/water/aot/fees.htm ○ Color copy of a USGS map with the property boundaries outlined (1" = 2,000' scale) ○ If Applicant is not the property owner, proof that the applicant will have a legal right to undertake the project on the property if a permit is issued to the applicant. ○ Color copy of a USGS map with the property for the property if a permit is issued to the applicant.
BIND IN A REPORT IN THE FOLLOWING ORDER:
 PLANS: One set of design plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details) Pre & post-development color coded soil plans on 11" x 17" (see Application Checklist for details) Pre & post-development drainage area plans on 34 - 36" by 22 - 24" white paper (see Application Checklist for details)
100-YEAR FLOODPLAIN REPORT: All information required in Env-Wq 1503.09, submitted as a separate report.
ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

REVIEW APPLICATION FOR COMPLETENESS & CONFIRM INFORMATION LISTED ON THE APPLICATION IS INCLUDED WITH SUBMITTAL.

NHDES-W-01-003	
12. REQUIRED SIGNATURES	
NG By initialing here, I acknowledge that I am required by Er in PDF format on a CD within one week after permit app	nv-Wq 1503.20(e) to submit a copy of all approved documents to the department proval.
By signing below, I certify that:	
 The information contained in or otherwise submitted with knowledge and belief; 	this application is true, complete, and not misleading to the best of my
	isleading information constitutes grounds for the department to deny the e information, and/or refer the matter to the board of professional engineers and
• I understand that I am subject to the penalties specified in	New Hampshire law for falsification in official matters, currently RSA 641.
APPLICANT APPL	LICANT'S AGENT:
Signature: Mild Mala	Date: <u>7/6/2023</u>
Name (print or type): <u>Nicholas Golon, PE/TFMoran, Inc.</u>	Title: Principal
	PERTY OWNER'S AGENT:
Signature: Mich Molon	Date: <u>7/6/2023</u>
Name (print or type): <u>Nicholas Golon, PE/TFMoran, Inc.</u>	Title: Principal

ATTACHMENT A:

ALTERATION OF TERRAIN PERMIT APPLICATION CHECKLIST

Check the box to indicate the item has been provided or provide an explanation why the item does not apply.

DESIGN PLANS

- Plans printed on 34 36" by 22 24" white paper
- 🛛 PE stamp
- Wetland delineation
- Temporary erosion control measures
- Treatment for all stormwater runoff from impervious surfaces such as roadways (including gravel roadways), parking areas, and nonresidential roof runoff. Guidance on treatment BMPs can be found in Volume 2, Chapter 4 of the NH Stormwater Management Manual.
- Pre-existing 2-foot contours
- Proposed 2-foot contours
- Drainage easements protecting the drainage/treatment structures
- Compliance with the Wetlands Bureau, RSA 482- A <u>http://des.nh.gov/organization/divisions/water/wetlands/index.htm</u>. Note that artificial detention in wetlands is not allowed.
- Compliance with the Comprehensive Shoreland Protection Act, RSA 483-B. <u>http://des.nh.gov/organization/divisions/water/wetlands/cspa</u>
- Benches. Benching is needed if you have more than 20 feet change in elevation on a 2:1 slope, 30 feet change in elevation on a 3:1 slope, 40 feet change in elevation on a 4:1 slope.
- Check to see if any proposed ponds need state Dam permits. <u>http://des.nh.gov/organization/divisions/water/dam/documents/damdef.pdf</u>

DETAILS

- Typical roadway x-section
- igodown Detention basin with inverts noted on the outlet structure
- Stone berm level spreader
- Outlet protection riprap aprons
- igtimes A general installation detail for an erosion control blanket
- igsquire Silt fences or mulch berm
- Storm drain inlet protection. Note that since hay bales must be embedded 4 inches into the ground, they are not to be used on hard surfaces such as pavement.
- Hay bale barriers
- Stone check dams
- Gravel construction exit
- 🔀 Temporary sediment trap
- The treatment BMP's proposed
- Any innovative BMP's proposed

NHDES-W-01-003

CONSTRUCTION SEQUENCE/EROSION CONTROL

Note that the project is to be managed in a manner that meets the requirements and intent of RSA 430:53 and Chapter Agr 3800 relative to invasive species.

Note that perimeter controls shall be installed prior to earth moving operations.

oxed N Note that temporary water diversion (swales, basins, etc) must be used as necessary until areas are stabilized.

- oxed N Note that ponds and swales shall be installed early on in the construction sequence (before rough grading the site).
- Note that all ditches and swales shall be stabilized prior to directing runoff to them.
- X Note that all roadways and parking lots shall be stabilized within 72 hours of achieving finished grade.
- X Note that all cut and fill slopes shall be seeded/loamed within 72 hours of achieving finished grade
- Note that all erosion controls shall be inspected weekly AND after every half-inch of rainfall.
- oxed N Note the limits on the open area allowed, see Env-Wq 1505.02 for detailed information.

Example note: The smallest practical area shall be disturbed during construction, but in no case shall exceed 5 acres at any one time before disturbed areas are stabilized.

Note the definition of the word "stable"

Example note: An area shall be considered stable if one of the following has occurred:

- Base course gravels have been installed in areas to be paved.
- A minimum of 85 percent vegetated growth has been established.
- A minimum of 3 inches of non-erosive material such stone or riprap has been installed.
- Or, erosion control blankets have been properly installed.
- Note the limit of time an area may be exposed Example note: All areas shall be stabilized within 45 days of initial disturbance.
- Provide temporary and permanent seeding specifications. (Reed canary grass is listed in the Green Book; however, this is a problematic species according to the Wetlands Bureau and therefore should not be specified)

Provide winter construction notes that meet or exceed our standards.

Standard Winter Notes:

- All proposed vegetated areas that do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized by seeding and installing erosion control blankets on slopes greater than 3:1, and seeding and placing 3 to 4 tons of mulch per acre, secured with anchored netting, elsewhere. The installation of erosion control blankets or mulch and netting shall not occur over accumulated snow or on frozen ground and shall be completed in advance of thaw or spring melt events.
- All ditches or swales which do not exhibit a minimum of 85 percent vegetative growth by October 15, or which are disturbed after October 15, shall be stabilized temporarily with stone or erosion control blankets appropriate for the design flow conditions.
- After October 15, incomplete road or parking surfaces, where work has stopped for the winter season, shall be protected with a minimum of 3 inches of crushed gravel per NHDOT item 304.3.

Note at the end of the construction sequence that "Lot disturbance, other than that shown on the approved plans, shall not commence until after the roadway has the base course to design elevation and the associated drainage is complete and stable." – This note is applicable to single/duplex family subdivisions, when lot development is not part of the permit.

DRAINAGE ANALYSES

NHDES-W-01-003

Please double-side 8 $\frac{1}{2}$ × 11" sheets where possible but, **do not** reduce the text such that more than one page fits on one side.

PE stamp

Rainfall amount obtained from the Northeast Regional Climate Center- http://precip.eas.cornell.edu/. Include extreme precipitation table as obtained from the above referenced website.

Drainage analyses, in the following order:

- Pre-development analysis: Drainage diagram.
- Pre-development analysis: Area Listing and Soil Listing.
- Pre-development analysis: Node listing 1-year (if applicable), 2-year, 10-year and 50-year.
- Pre-development analysis: Full summary of the 10-year storm.
- Post-development analysis: Drainage diagram.
- Post-development analysis: Area Listing and Soil Listing.
- Post-development analysis: Node listing for the 2-year, 10-year and 50-year.
- Post-development analysis: Full summary of the 10-year storm.

Review the Area Listing and Soil Listing reports

- Hydrologic soil groups (HSG) match the HSGs on the soil maps provided.
- There is the same or less HSG A soil area after development (check for each HSG).
- There is the same or less "woods" cover in the post-development.
- Undeveloped land was assumed to be in "good" condition.
- The amount of impervious cover in the analyses is correct.

Note: A good check is to subtract the total impervious area used in the pre analysis from the total impervious area used in the post-analysis. For residential projects without demolition occurring, a good check is to take this change in impervious area, subtract out the roadway and divide the remaining by the number of houses/units proposed. Do these numbers make sense?

 \boxtimes Check the storage input used to model the ponds.

🛛 Check to see if the artificial berms pass the 50-year storm, i.e., make sure the constructed berms on ponds are not overtopped.

Check the outlet structure proposed and make sure it matches that modeled.

 \boxtimes Check to see if the total areas in the pre and post analyses are same.

Confirm the correct NRCS storm type was modeled (Coos, Carroll & Grafton counties are Type II, all others Type III).

PRE- AND POST-DEVELOPMENT DRAINAGE AREA PLANS

Plans printed on 34 - 36" by 22 - 24" on white paper.

- Submit these plans separate from the soil plans.
- \square A north arrow.
- \square A scale.
- Labeled subcatchments, reaches and ponds.
- Tc lines.
- \square A clear delineation of the subcatchment boundaries.
- Roadway station numbers.
- Culverts and other conveyance structures.

PRE AND POST-DEVELOPMENT COLOR-CODED SOIL PLANS

NH	DES-	-W-0	1-003

 \boxtimes 11" × 17" sheets suitable, as long as it is readable.

Submit these plans separate from the drainage area plans.

 \boxtimes A north arrow.

A scale.

 \boxtimes Name of the soil scientist who performed the survey and date the soil survey took place.

2-foot contours (5-foot contours if application is for a gravel pit) as well as other surveyed features.

 \boxtimes Delineation of the soil boundaries and wetland boundaries.

Delineation of the subcatchment boundaries.

 \boxtimes Soil series symbols (e.g., 26).

A key or legend which identifies each soil series symbol and its associated soil series name (e.g., 26 = Windsor).

The hydrologic soil group color coding (A = Green, B = yellow, C= orange, D=red, Water=blue, & Impervious = gray).

Please note that excavation projects (e.g., gravel pits) have similar requirements to that above, however the following are common exceptions/additions:

Drainage report is not needed if site does not have off-site flow.

5 foot contours allowed rather than 2 foot.

No PE stamp needed on the plans.

Add a note to the plans that the applicant must submit to the Department of Environmental Services a written update of the project and revised plans documenting the project status every five years from the date of the Alteration of Terrain permit.

Add reclamation notes.

See NRCS publication titled: *Vegetating New Hampshire Sand and Gravel Pits* for a good resource, it is posted online at: <u>http://des.nh.gov/organization/divisions/water/aot/categories/publications</u>.

ADDITIONAL INFORMATION RE: NUTRIENTS, CLIMATE

If project will discharge stormwater to a surface water impaired for phosphorus and/or nitrogen, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a Class A surface water or Outstanding Resource Water, include information to demonstrate that project will not cause net increase in phosphorus and/or nitrogen.

If project will discharge stormwater to a lake or pond not covered previously, include information to demonstrate that project will not cause net increase in phosphorus in the lake or pond.

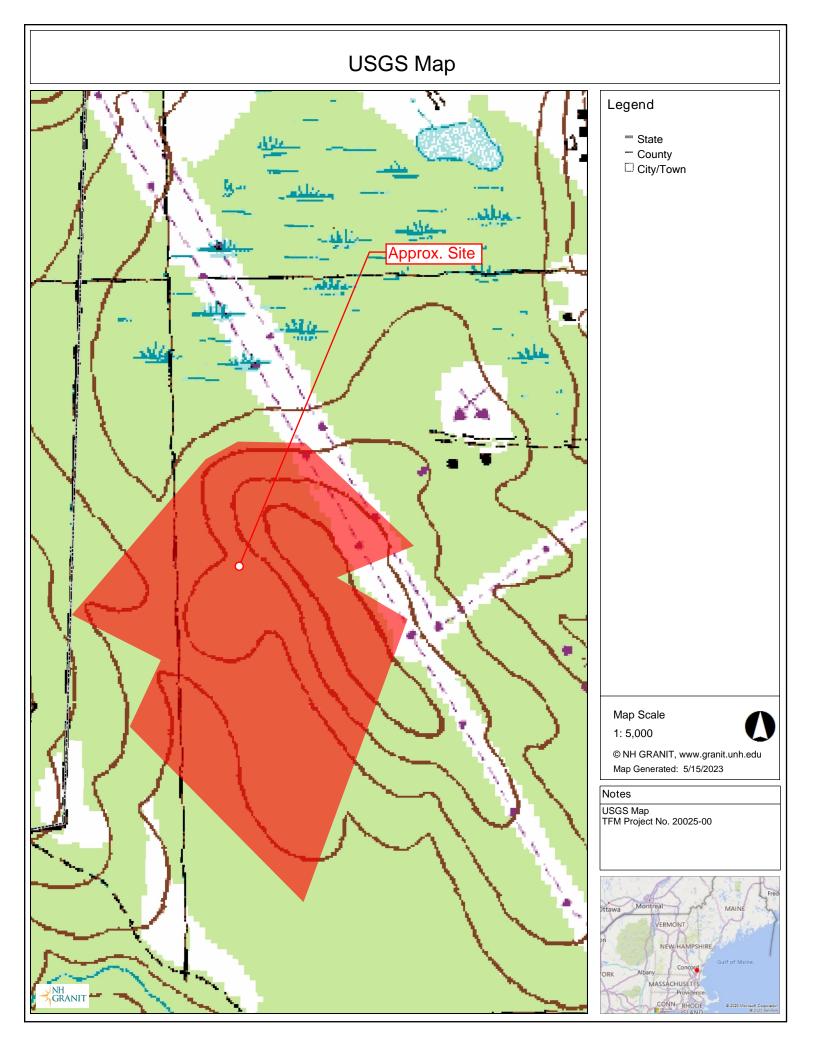
If project is within a Coastal/Great Bay Region community, include info required by Env-Wq 1503.08(I) if applicable.

NETAMOUNT	AMOUNT	COMMENT	INVOICE NO.	DATE
16,875.0	AWICONT	NHDES AoT Permit Application Fee	CkReq 071423	
16,875.0	TOTAL			
16,875.0	TOTAL	VENDOR TREASURER, STATE OF NEW HAMPSHIR	/23	DATE 07/14

24234

Sixteen Thousand Eight Hundred Seventy Five and no/100

07/14/23	24234	\$16,875.00


TREASURER, STATE OF NEW HAMPSHIRE

24234

				21201
DATE	INVOICE NO.	COMMENT	AMOUNT	NETAMOUNT
	INVOICE NO. CkReq 071423	NHDES AoT Permit Application Fee	AMOUNT	16,875.00
DATE 07/14	l/23	VENDOR TREASURER, STATE OF NEW HAMPSHIR	TOTAL	16,875.00

TFMORAN INC. BEDFORD, NH			CHECK REQUEST FORM			
Requested By:	Jeremy Bela	inger	Date : 7/14/23			
Account Code:	20025-00			ount: \$16,8	75.00)
Payable To:	Treasurer St	ate of New H	Iampshire			
Address:	PO Box 95					
City:	Concord		NH	()3303	-0095
Contact:	Ridgely Ma	uck, PE	Phone: (603	3) 271-2147		
Payable For:	Payable For: NHDES AoT Permit Application Fee					
Required When:	ASAP		Mail Check	:	Yes	🔀 No
Project Name:	Unitil Utilit	y Scale PV	Approved:	M.Mar	Da	ate: 7/14/23
ACCOUNTING USE ONLY						
Check Number:		Issued By:		Date:		Acct No:

Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists

July 6, 2023

Town of Kingston 163 Main Street Kingston, NH 03848

New Hampshire Department of Environmental Services 29 Hazen Drive PO Box 95 Concord, New Hampshire 03301-0095

RE: **Certification Statement Unitil Kinston Solar Project** 14 & 24 Towle Road, Kingston, NH 03848 Tax Map R12 Lots 25 & 26

To whom it may concern;

I hereby certify that the attached transmittal was delivered by hand and electronic format to the Town of Kingston.

Sincerely,

Journy Belauger

TFMoran, Inc.

48 Constitution Drive Bedford, NH 03110 Phone (603) 472-4488 Fax (603) 472-9747 www.tfmoran.com

PART 1

Executive Summary

Unitil views renewable energy as a valuable resource that provides benefits to the electric grid and the environment. Unitil Energy Systems is looking to expand into utility scale photovoltaic generating (PV) facilities within its electric service territory in New Hampshire. The proposed Photovoltaic (PV) Solar Array project is located at 14 & 24 Towle Road, in Kingston, NH Tax Map R-12, Lot 26 (approximately 32.9 +/- acres) and part of Lot 25 (approximately 3.7 +/-) located within the Rural Residential District. The site is abutted by the existing Eversource Peaslee and Unitil Kingston Substations to the east, residential properties to the north, south, and west. Towle Road (Class VI) encompasses the northwestern property line. An electric utility corridor traverses through the property, terminating at the existing substations. Access to the parcel is via the class IV portion of Towle Road.

An open and closed drainage system is proposed to capture runoff from the site for this phase of the project. One (1) proposed Bio- Retention Area with sediment forebay will be utilized to manage runoff and provide the pretreatment/treatment for a majority of the site. The northwest and southeast portions of the on the site will discharge though two (2) Vegetated Buffer Areas prior to entering wetland areas.

The systems have been designed to maintain peak flows during all storm conditions up to and including the 50-year storm event.

- Best Management Practices are proposed to manage stormwater from the development and provide treatment, groundwater recharge and maintain existing flow rates leaving the site.
 - One (1) Bio-Retention Area is proposed to maintain existing recharge rates to preserve groundwater levels and pollutant removal is achieved by the filtering media as well as biological uptake from the specified plantings. The sediment forebay provides pretreatment to allow sediment to settle out of the stormwater prior to entering the main cell of the basin. A volume of crushed stone is provided below the filtering media to provide additional storage for stormwater runoff as necessary.
 - Two (2) Vegetated Buffers are proposed to mitigate impact of the wetland buffer zone. The design ensures runoff enters the buffer as sheet flow without the aid of a level spreader for areas with limited areas of impervious surface.
- There is no increase in the peak rate of runoff at the discharge points from the project site and the volume of runoff recharged to the aquifer has been maintained for the total site.
- The Water Quality Volume (WQV) has been met by providing the required storage below the lowest outlet orifice of the stormwater management area.

Description of Project

The proposed project is to construct a utility scale photovoltaic generating (PV) facility along with associated amenities such as a gravel access drive, storage for equipment, a fence line, and stormwater management. The proposed area of work is located to at 14 & 24 Towle Road, west of the existing Eversource Peaslee and Unitil Kingston Substations within the Rural Residential District.

The site is wooded and undeveloped, except for signs of prior logging operations. The existing topography property consists of approximately 30 feet of grade change (200 feet to 170 feet), descending from the adjacent utility corridor in the northeast to the wetland complex in the southern portions of the property. Access to the parcel is via the class IV portion of Towle Road. Photos of existing features can be found in Section 2 of this Report.

The placement of the solar array was arranged to mitigate impacts on the valuable wetland located on the southern end of the site. The stormwater system was also designed to compensate for the three impacted wetlands.

Proposed and existing open and closed drainage systems will convey, attenuate, and provide treatment/groundwater recharge of stormwater associated with the development. The majority of the site will drain to the southeast of the site though one (1) proposed Bio-Retention Area, while the northwest and southeast portions of the on the site will discharge though two (2) Vegetated Buffer Areas.

A NHDES Alteration of Terrain, NHDES Major Wetlands Dredge and Fill, and Kingston Site Plan and Lot Line Adjustment Approvals will be required for the site development project.

The objectives for the post-development drainage design are to use best management practices to attenuate flows, provide pretreatment and treatment to collected stormwater runoff and maintain groundwater recharge.

The intent of this report is: 1) to analyze the rate of runoff from the site for the pre- and post-development conditions. The drainage system will be designed to maintain the current peak rate of runoff from the site, and 2) to provide stormwater treatment and groundwater recharge for the runoff from the site expansion in accordance with the requirements of the NHDES and Town of Kingston.

Storm Water Methodology

Pre-Development Conditions

Based on existing topography, five (5) sub catchments and seven (7) points of interest were identified.

Evaluation points have been defined by abutting parcels, with identifying HydroCAD Links as follows:

- The class IV road to the northwest, Towle Road has been denoted as POI-A;
- The northeastern abutting utility corridor has been denoted as POI-B;
- The northeastern abutting parcel (Tax Map R-12, Lot 24) has been denoted as POI-C;
- The eastern abutting parcels (Tax Map R-11, Lots 4a and 4B) have been denoted as POI-D;
- The eastern abutting (Tax Map R-11 14) has been denoted as POI-E;
- The eastern abutting parcel (Tax Map R-11, 13) has been denoted as POI-F;
- The southeastern abutting parcel (Tax Map R-11, 9), which is also owned by Unitil, denoted as POI-G; and
- The southwestern abutting parcel (Tax Map R-12, 27) denoted as POI-H.

Due to the existing and proposed site improvements, stormwater runoff from the property does not discharge to POI-E in pre-development conditions. Runoff from POI-D does discharge briefly onto the site and return back onto the same abutting property. POI-C overlaps with POI-B along the northeastern property line, due to a utility easement. These evaluation points have been included in the HydroCAD Analysis for informative purposes.

A SSSM Soils Report was generated by GAL Land Consultants for the subject property which resulted in hydrologic soils group (HSG) type B, C and D soils. Rainfall amounts were obtained from the Northeast Regional Climate Center and NRCS Storm Type-III was utilized for the HydroCAD Analysis. An Extreme Precipitation Table has been provided in Section 2 of this Report.

To model the site drainage, the HydroCAD Version 10.10-7a program has been used. The software is based on the SCS TR-20 technique used for modeling the hydrology and hydraulics of storm water runoff. The 2-year, 10-year, and 50-year storm-events are included per the requirements of the NHDES AoT and the Town of Kingston.

Post-Development Conditions

The proposed project will include a solar field, a fence line, an access drive, concrete equipment pads, and associated stormwater management systems. A majority of the site will be composed of grassland, solar panels, and a fence line surrounding the panels. The two (2) wetlands complexes to the west and south will remain undeveloped and be protected by two (2) Vegetated Buffer Areas. One (1) grassed waterway will direct a majority of site discharge through the one (1) Bio-retention Area to the south. Access to the site will be through a gravel drive that extends to the equipment pads on the west end of the site via Towle Road.

The proposed open and closed drainage system has been designed to collect, treat, and recharge stormwater runoff from the portions of the project, with an outlet structure connected to the existing municipal closed drainage system. There is no proposed increase in discharge from the site up to and including the 50-year storm event.

The post-development drainage model represents the site divided into multiple subcatchments based on the layout of the proposed stormwater collection systems.

The Groundwater Recharge Volume (GRV) has been met via the existing and prosed infiltration systems.

All pre-development evaluation points have been analyzed in post-development conditions.

Groundwater Recharge

The required GRV for the HSG B and C soils which has been replaced by impervious cover per AoT regulations has been provided within the proposed bioretention system. Supporting calculations have been provided on the GRV and Best Management Practices (BMP) Worksheet, Section 3 of this Report.

Stormwater Treatment

Best Management Practices are proposed to manage the stormwater from the development and provide treatment, groundwater recharge and maintain existing flow rates leaving the site.

Bio-Retention Areas are required to provide pre-treatment prior to stormwater entering the main cell of the basin. The sediment forebay allows particles to settle out of the stormwater. Bio-Retention Areas remove pollutants, reduce the peak rates of flow, and reduce flow volume by allowing evaporation and infiltration of the stormwater. Stormwater runoff pollutant removal is achieved as water percolated through the filtering media as well as biological uptake from the specified plantings. Infiltration also provides groundwater recharge.

Vegetated buffers are areas of natural or established vegetation allowed to grow with minimal to no maintenance. Natural, undisturbed buffers are particularly desirable along shorelines of waterbodies and wetlands, as well as along connecting habitat corridors. Buffers reduce the velocity of runoff, promote groundwater recharge, filter out sediments and provide shade to reduce the thermal impacts of runoff to receiving waters. Buffers also provide habitat for wildlife.

The Water Quality Volume (WQV) is fully detained within the proposed Bio-Retention Area and the Vegetated Buffer providing the storm water treatment.

Test pits and infiltration testing were performed as part of the project design. The rates and depth to seasonal high groundwater used in these calculations are based on those values obtained, with a factor of safety.

18-inches of filter media will be installed within the bottom of the bioretention area per NHDES AoT regulations. Specifications have been included on the Site Plan Detail Sheets.

The NRCS Web Soil Survey was utilized to determine the on-site soil characteristics, and the rates used in the calculations are based on the values obtained from the soil mapping, with factor of safety.

Erosion Control Measures

Erosion Control Measures are found on the Stormwater Management Plan within the plan set. The erosion control and construction sequence notes on the Notes Sheets contain specifications for stabilizing disturbed areas and limiting the length of time these areas are exposed.

Temporary Erosion Control Measures

Silt Sock or a stump grindings berm are proposed along the edges of down slope site work to prevent sediment from leaving the project area. A stabilized construction entrance is proposed at the driveway entrance to prevent sediment from being tracked onto the street during construction.

Temporary Swales and Sediment Basins

Temporary swales and sediment basins, to be utilized during construction, were sized to provide no discharge from basins during the 2-year, 24-hour storm event (see table below). Ground cover was modeled as, "Newly Graded Areas", "Gravel", and "Unconnected Impervious" for the HydroCAD Analysis.

The location of Vegetated Buffers #1 and #2 will be utilized for Temporary Sediment Basins #1 and #3, maintaining permanent finish grade elevations at the limits of work. Temporary Swale #1 will be located in the vicinity of the permanent vegetated swale along Towle Road and has been evaluated for peak depth and velocity during the 2-yr storm event. When the upstream areas are stabilized, the temporary basins will be regraded to finish grade, loamed and seeded in accordance with the Site Plans.

Bioretention Area #1 will be utilized for Temporary Sediment Basin #2 and Temporary Swale #2. The basin will be excavated to the bottom of the proposed bioretention area (elevation 167.0). When the project is stabilized, the bottom of the basin will be excavated to finish grade for installation of filter media.

Temporary Sediment Basin	2-YR, 24-HR Inflow Volume (cf)	Volume of Storage (cf)*
#1	32,089	33,437
#2	144,644	143,454
#3	10,459	15,065

Temporary Basins have been equipped with overflow spillways.

*below lowest outlet orifice

Permanent Erosion Control Measures

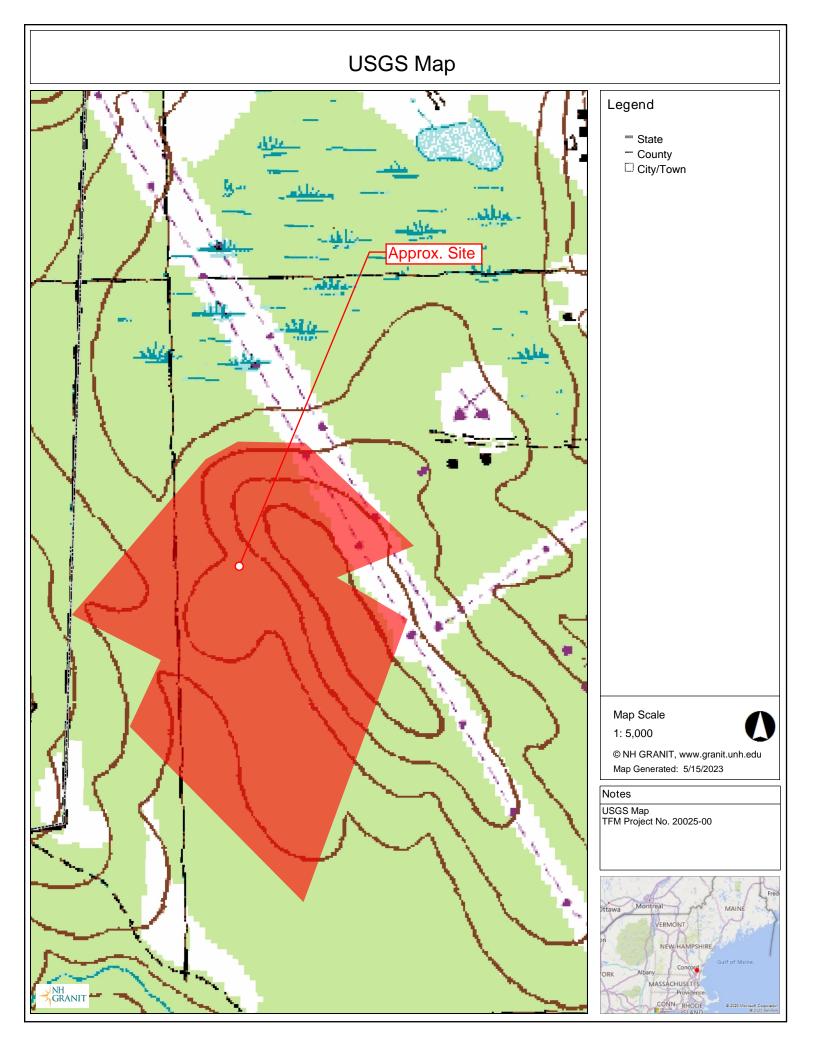
An open and closed drainage system is proposed on the site to capture the runoff from the project.

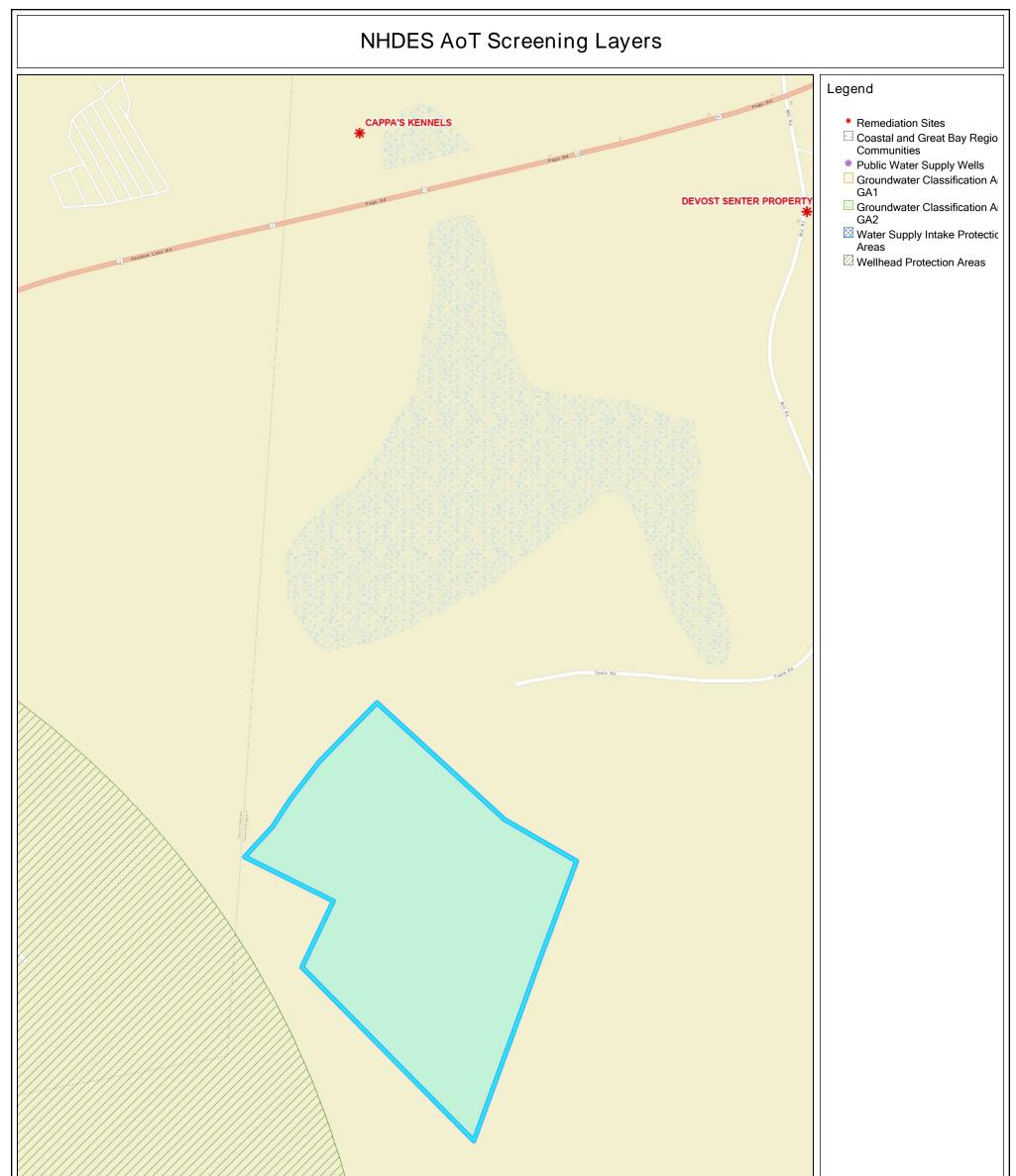
Flood Protection

Examination of the Flood Insurance Rate Map for Rockingham County New Hampshire (All Jurisdictions), Map Numbered 33015C0390E, Effective Date: May 17, 2005, indicates that the proposed work is not located within the floodplain.

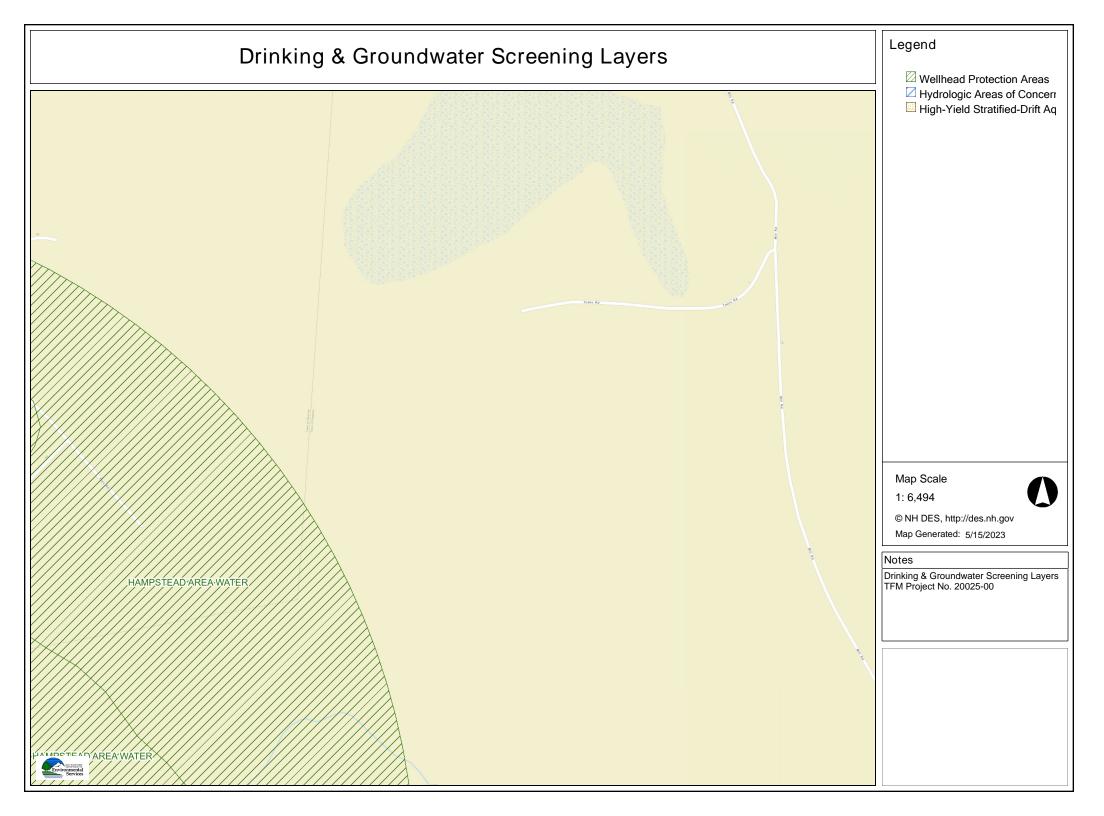
Conclusion

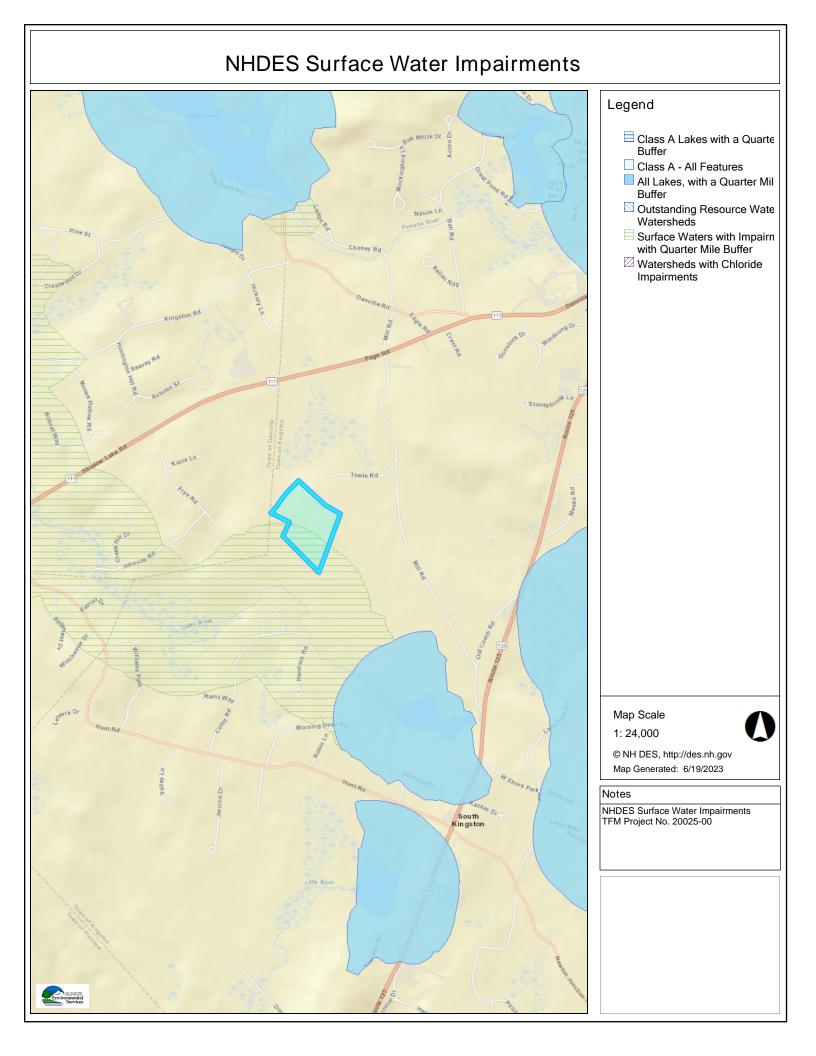
Peak Rate Flows

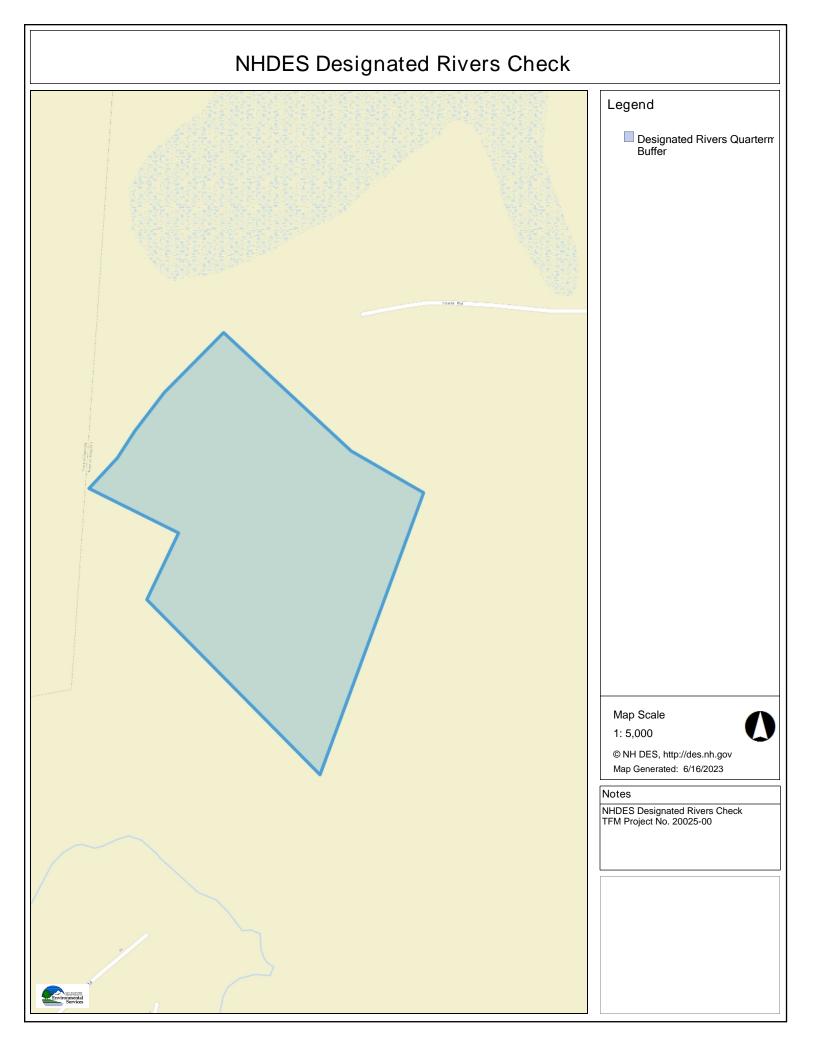

There is no increase in the peak rate of runoff at discharge points and stormwater volume recharged to the aquifer has been maintained for the total site.

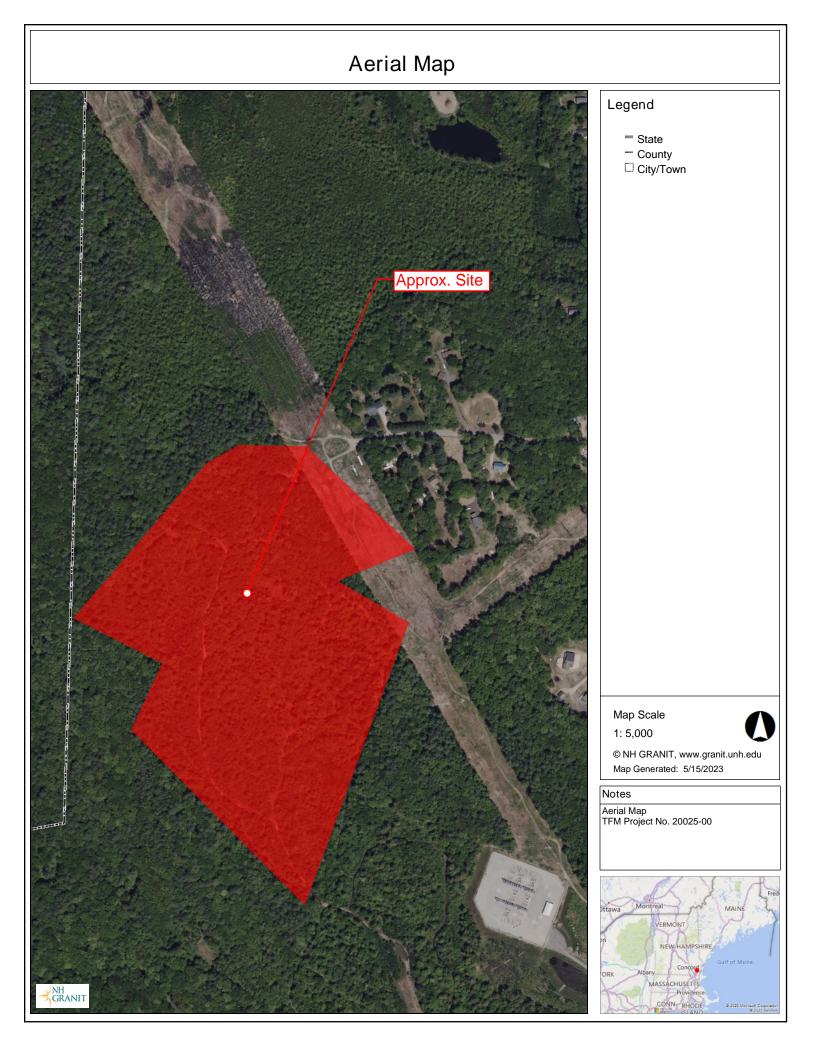

Flow (cfs)	2-YR		10-YR		50-YR	
	PRE	POST	PRE	POST	PRE	POST
POI-A	0.6	0.3	2.6	1.3	6.9	3.5
POI-B	0.1	0.1	0.8	0.3	2.7	0.8
POI-C	0.1	0.1	0.6	0.4	1.7	1.2
POI-D	0.1	0.1	0.3	0.3	1.0	0.7
POI-E	0.0	0.0	0.0	0.0	0.0	0.0
POI-F	0.0	0.0	0.0	0.0	0.0	0.0
POI-G	2.9	2.2	8.7	5.5	20.0	11.5
POI_H	6.0	5.1	17.6	12.8	39.3	38.0

Treatment


The proposed bioretention area and vegetated buffers have been designed to provide adequate treatment for stormwater runoff.


PART 2





HAMPSTEAD AREA WATER	
	Map Scale 1: 5,000
	© NH DES, http://des.nh.gov Map Generated: 6/7/2023
	Notes: NHDES AoT Screening Layers TFM Project No. 20025-00
HAMPSTEAD AREA WATER	
CRANIT CONTRACTOR OF	

Memo

NH Natural Heritage Bureau NHB DataCheck Results Letter

Please note: portions of this document are confidential.

Maps and NHB record pages are confidential and should be redacted from public documents.

- To: Jeremy Belanger 48 Consitution Dr Bedford, NH 03110
- From: NHB Review, NH Natural Heritage Bureau
- **Date**: 9/23/2022 (valid until 09/23/2023)
- **Re**: Review by NH Natural Heritage Bureau
- Permits: MUNICIPAL POR Kingston, NHDES Alteration of Terrain Permit, NHDES Wetland Standard Dredge & Fill Major, USACE General Permit, USEPA Stormwater Pollution Prevention

 NHB ID:
 NHB22-3062
 Town:
 Kingston
 Location:
 2 Mill Road & 24 Towle Road

 Description:
 Proposed Utility Scale Photovoltaic Generating (PV) Facility with associated access and stormwater management areas.

 cc:
 NHFG Review

As requested, I have searched our database for records of rare species and exemplary natural communities, with the following results.

Comments NHB: No comments at this time.

F&G: Please refer to NHFG consultation requirements below.

Vertebrate species	State ¹	Federal	Notes
Blanding's Turtle (Emydoidea blandingii)	Е		Contact the NH Fish & Game Dept (see below).
Northern Black Racer (<i>Coluber constrictor constrictor</i>)	Т		Contact the NH Fish & Game Dept (see below).
Spotted Turtle (Clemmys guttata)	Т		Contact the NH Fish & Game Dept (see below).

¹Codes: "E" = Endangered, "T" = Threatened, "SC" = Special Concern, "--" = an exemplary natural community, or a rare species tracked by NH Natural Heritage that has not yet been added to the official state list. An asterisk (*) indicates that the most recent report for that occurrence was more than 20 years ago.

For all animal reviews, refer to 'IMPORTANT: NHFG Consultation' section below.

Disclaimer: A negative result (no record in our database) does not mean that a sensitive species is not present. Our data can only tell you of known occurrences, based on information gathered by qualified biologists and reported to our office. However, many areas have never been surveyed, or have only been surveyed

Department of Natural and Cultural Resources Division of Forests and Lands (603) 271-2214 fax: 271-6488 DNCR/NHB 172 Pembroke Rd. Concord, NH 03301

Memo

Please note: portions of this document are confidential.

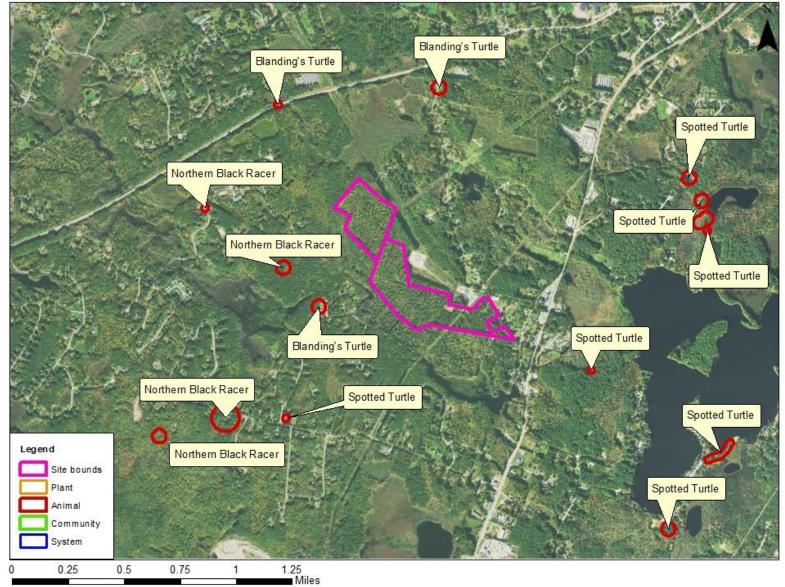
Maps and NHB record pages are confidential and should be redacted from public documents.

for certain species. An on-site survey would provide better information on what species and communities are indeed present.

IMPORTANT: NHFG Consultation

If this NHB Datacheck letter DOES NOT include <u>ANY</u> wildlife species records, then, based on the information submitted, no further consultation with the NH Fish and Game Department pursuant to Fis 1004 is required.

If this NHB Datacheck letter includes a record for a threatened (T) or endangered (E) wildlife species, consultation with the New Hampshire Fish and Game Department under Fis 1004 may be required. To review the Fis 1000 rules (effective February 3, 2022), please go to https://wildlife.state.nh.us/wildlife/environmental-review.html. All requests for consultation and submittals should be sent via email to NHFGreview@wildlife.nh.gov or can be sent by mail, and **must include the NHB Datacheck results letter number and "Fis 1004 consultation request" in the subject line.**


If the NHB DataCheck response letter does not include a threatened or endangered wildlife species but includes other wildlife species (e.g., Species of Special Concern), consultation under Fis 1004 is not required; however, some species are protected under other state laws or rules, so coordination with NH Fish & Game is highly recommended or may be required for certain permits. While some permitting processes are exempt from required consultation under Fis 1004 (e.g., *statutory permit by notification, permit by notification, routine roadway registration, docking structure registration, or conditional authorization by rule*), coordination with NH Fish & Game may still be required under the rules governing those specific permitting processes, and it is recommended you contact the applicable permitting agency. For projects <u>not</u> requiring consultation under Fis 1004, but where additional coordination with NH Fish and Game is requested, please email: Kim Tuttle <u>kim.tuttle@wildlife.nh.gov</u> with a copy to <u>NHFGreview@wildlife.nh.gov</u>, and include the NHB Datacheck results letter number and "review request" in the email subject line.

Contact NH Fish & Game at (603) 271-0467 with questions.

Department of Natural and Cultural Resources Division of Forests and Lands (603) 271-2214 fax: 271-6488 DNCR/NHB 172 Pembroke Rd. Concord, NH 03301

CONFIDENTIAL – NH Dept. of Environmental Services review

NHB22-3062

New Hampshire Natural Heritage Bureau - Animal Record

Blanding's Turtle (Emydoidea blandingii)

Legal Status	Conservation Status			
Federal: Not listed	Global: Apparently secure but with cause for concern			
State: Listed Endangered	State: Critically imperiled due to rarity or vulnerability			
Description of this Logation				
Description at this Location				
Conservation Rank: Not ranked				
Comments on Rank:				
Detailed Description: 2014: Area 13928: 1 adult ob	oserved, sex unknown.			
	2014: Area 13928: Roadside. Shrub wetland with sunny, sandy banks on either side of the			
road.				
General Comments:				
Management				
Comments:				
Location				
Survey Site Name: Colby Brook				
Managed By:				
County: Rockingham				
Town(s): Danville				
Size: .4 acres	Elevation:			
SIZE4 deles	Elevation:			
Precision: Within (but not necessarily restricted to) the area indicated on the map.				
Directions: 2014: Area 13928: Route 111, about 1 mile east of junction with Route 111A, Danville (42.90604, - 71.10044).				
Dates documented				
First reported: 2014-07-21	Last reported: 2014-07-21			
1	L T T			

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

New Hampshire Natural Heritage Bureau - Animal Record

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conser	vation Status		
Federal: Not listed		Global:	Apparently secure but with cause for concern		
State: Listed Endan	gered	State:	Critically imperiled due to rarity or vulnerability		
Description at this Location					
	Not ranked				
Comments on Rank:					
1					
	2010: Area 12835: Roadside in mixed forest.				
General Comments:					
Management					
Comments:					
Location					
Survey Site Name: Co	olby Brook				
Managed By:					
~ ~					
County: Rockingham	n				
Town(s): Kingston Size: 1.9 acres		Elevatio	271		
Size. 1.9 acres		Elevatio	JII.		
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2010: Area 12835: 60 Mill Road, Kingston.					
Dates documented					
First reported: 20	010-07-23	Last rep	ported: 2010-07-23		

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

Blanding's Turtle (Emydoidea blandingii)

Legal Status		Conserv	vation Status			
Federal: Not listed		Global:	Apparently secure but with cause for concern			
State: Listed Enda	ngered	State:	Critically imperiled due to rarity or vulnerability			
Description at this Lo	agation					
Conservation Rank:	Not ranked					
Comments on Rank:						
Detailed Description:	Detailed Description: 2021: Area 14857: 1 adult female observed, laying eggs in compost pile.					
General Area:			idential yard near Colby Brook. Houses surrounded			
	by wetlands and woods.					
General Comments:						
Management						
Comments:						
Location						
Survey Site Name: Colby Brook						
Managed By:						
County: Rockingha	m					
Town(s): Kingston						
Size: 1.9 acres		Elevatio	n:			
Precision: Within (but not necessarily restricted to) the area indicated on the map.						
Directions: 2021: Area 14857: 2 Beaver Pond Road, Kingston.						
Directions. 2021. Area 14037. 2 Deaver 1 ond Road, Ringston.						
Dates documented						
First reported: 2	2021-06-05	Last rep	orted: 2021-06-05			

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

Northern Black Racer (Coluber constrictor constrictor)

Legal Status		Conservation Status					
Federal: Not listed		Global:	Demons	trably widespread, abundant, and secure			
			State: Imperiled due to rarity or vulnerability				
Description at this Location							
Conservation Rank:	Not ranked						
Comments on Rank:							
Detailed Description:	2020: Area 14796: 1 adult of unknown.	oserved, s	ex unkno	wn. 2015: Area 14022: 1 adult observed, sex			
General Area: 2020: Area 14796: Town forest with hiking trails. 2015: Area 14022: Roadside in cul-de Snake went into the woods to north towards horse farm.							
General Comments:							
Management							
Comments:							
Location Survey Site Name: Colby Brook Managed By:							
County: Rockingha	m						
Town(s): Kingston							
Size: 2.4 acres		Elevatio	on:				
Precision: Within (but not necessarily restricted to) the area indicated on the map.							
Directions: 2020: Area 14796: Along the White Trail in Frye Town Forest, Kingston. 2015: Area 14022: 38 Creek Hill Drive, Danville.							
Dates documented							
First reported: 2	2015-06-08	Last rep	orted:	2020-07-20			
*		1					

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

Northern Black Racer (Coluber constrictor constrictor)

Legal Status Conservation Status						
Federal: Not listed	Global: Demonstrably widespread, abundant, and secure					
State: Listed Threatened	State: Imperiled due to rarity or vulnerability					
Description at this Location						
Conservation Rank: Not ranked						
Comments on Rank:						
comments on Nank.						
Detailed Description: 2017: Area 14372: 1 adult observed, sex unknown. Area 14374M: 1 adult observed, sex unknown on 8/26. 1 adult observed, sex unknown on 8/31.						
	Residential yard. Area 14374: Forest.					
General Comments:						
Management						
Comments:						
Location Survey Site Name: Colby Brook, south of Managed By:						
County: Rockingham						
Town(s): Kingston						
Size: 9.6 acres	Elevation:					
Precision: Within (but not necessarily restricted to) the area indicated on the map.						
Directions: 2017: Area 14372: 66 Hunt Road, Kingston. Area 14374M: Hunt Road Town Forest.						
Dates documented						
First reported: 2017-06-24	Last reported: 2017-08-31					

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

Spotted Turtle (*Clemmys guttata*)

Legal Status	Conservation Status						
Federal: Not listed	Global: Demonstrably widespread, abundant, and secure						
State: Listed Three	atened State: Imperiled due to rarity or vulnerability						
Description at this Location							
Conservation Rank:	Fair quality, condition and/or landscape context ('C' on a scale of A-D).						
Comments on Rank:	-						
Detailed Description:	2015: Area 11751M: 1 adult female observed. Area 14090: 1 adult female observed. 2008: Area 11554: 1 adult female seen. Turtle was nesting. 2007: Area 11751M: 1 female seen. One hatchling emerged in fall from nest. Nest was partially dug up by observer later in fall						
General Area:	when another hatchling was observed partially emerged from shell. 2015: Area 11751M: Residential yard, in between driveway and pool fence. Area 14090: Residential yard, on the edge of the treeline. There is a small marshy area toward the back of the property, with cattails, sedges, and rushes. 2008: Area 11554: In yard at residence. 2007: Area 11751M: Yard at residence.						
General Comments:							
Management							
Comments:							
Location							
Survey Site Name: O Managed By:	Colby Brook, south of						
County: Rockingha							
Town(s): Hampstead Size: 8.6 acres	Elevation:						
Size: 8.6 acres Elevation:							
Precision: Within (but not necessarily restricted to) the area indicated on the map.							
Directions: 2015: Area 14090: 1 Colby Road, Kingston. 2008: Area 11554: 3 Sean Drive, Hampstead. 2007: Area 11751M: 3 Sean Drive, Hampstead.							
Dates documented							
First reported: 2	2007-06-20 Last reported: 2015-06-25						

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

Spotted Turtle (Clemmys guttata)

Federal: Not listed Global: Demonstrably widespread, abundant, and secure State: Listed Threatened State: Imperiled due to rarity or vulnerability Description at this Location Conservation Rank: Fair quality, condition and/or landscape context ('C' on a scale of A-D). Comments on Rank: Detailed Description: 2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 1364: Area 1364: Area 1364: I adult observed, sex unknown. 2012: Area 12739M: 1 adult observed, sex unknown, on 8/24. Area 1364: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult observed. Jup: Area 660: Seen. General Area: 2019: Area 14608: Roadside. 2018: Area 14472: Basking on a log in small pond. 2014: Area 1364: The Forested wetland. Area 1360: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond. General Comments: Management Comments: Survey Site Name: Country Pond Managed By: Webster Wildlife + Natural Area					
Description at this LocationConservation Rank:Fair quality, condition and/or landscape context ('C' on a scale of A-D).Comments on Rank:Detailed Description:2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 13641M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown. 0012: Area 12739M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown, on 8/24. Area 13680: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult observed. 2010: Area 12739M: 1 adult observed, sex unknown. 2012: Area 13103: 1 adult observed. 2010: Area 12739M: 1 adult observed. 1991: Area 6601: Seen.General Area:2019: Area 14608: Roadside. 2018: Area 14472: Basking on a log in small pond. 2014: Area 13641M: Forested wetland. Area 13680: Shrub wetland. 2011: Area 6601: Pond.General Comments:1991: Area 6601: Student told James Taylor. Management Comments:Survey Site Name:Country Pond					
Conservation Rank: Comments on Rank:Fair quality, condition and/or landscape context ('C' on a scale of A-D).Detailed Description:2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 13641M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown, on 8/24. Area 13680: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult and 2 juveniles observed. 2011: Area 12739M: 1 adult observed. Area 13103: 1 adult observed. 2010: Area 12739M: 1 adult observed. 1991: Area 6601: Seen.General Area:2019: Area 14608: Roadside. 2018: Area 13680: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond.General Comments:1991: Area 6601: Student told James Taylor. LocationSurvey Site Name:Country Pond					
Conservation Rank: Comments on Rank:Fair quality, condition and/or landscape context ('C' on a scale of A-D).Detailed Description:2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 13641M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown, on 8/24. Area 13680: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult and 2 juveniles observed. 2011: Area 12739M: 1 adult observed. Area 13103: 1 adult observed. 2010: Area 12739M: 1 adult observed. 1991: Area 6601: Seen.General Area:2019: Area 14608: Roadside. 2018: Area 13680: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond.General Comments:1991: Area 6601: Student told James Taylor. LocationSurvey Site Name:Country Pond					
Comments on Rank:Detailed Description:2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 13641M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown, on 8/24. Area 13680: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult observed. 2011: Area 12739M: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult observed. 2010: Area 12739M: 1 adult observed. Area 13103: 1 adult observed. 2010: Area 12739M: 1 adult observed. 1991: Area 6601: Seen.General Area:2019: Area 14608: Roadside. 2018: Area 14472: Basking on a log in small pond. 2014: Area 13641M: Forested wetland. Area 13680: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond.General Comments:Management Comments:Survey Site Name:Country Pond					
Detailed Description:2019: 2019 Survey area: 1 female captured during trap survey. Area 14608: 1 adult observed, sex unknown. 2018: Area 14472: 2 individuals observed, sex unknown. 2017: Area 12739M: 1 adult observed, sex unknown. 2015: Area 14007: 1 adult observed, sex unknown. 2014: Area 13641M: 1 adult observed, sex unknown, on 6/7. 1 adult observed, sex unknown, on 8/24. Area 13680: 1 adult observed, sex unknown. 2012: Area 12739M: 1 adult observed. 2010: Area 12739M: 1 adult observed, sex unknown. 2012: Area 13103: 1 adult observed. 2010: Area 12739M: 1 adult observed. 1991: Area 6601: Seen.General Area:2019: Area 14608: Roadside. 2018: Area 14472: Basking on a log in small pond. 2014: Area 13641M: Forested wetland. Area 13680: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond.General Comments:1991: Area 6601: Student told James Taylor. 					
General Area:2019: Area 14608: Roadside. 2018: Area 14472: Basking on a log in small pond. 2014: Area 13641M: Forested wetland. Area 13680: Shrub wetland. 2011: Area 12739M: Cedar swamp and brushy marsh. Area 13103: Dirt road adjacent to stream. 1991: Area 6601: Pond.General Comments:1991: Area 6601: Student told James Taylor. LocationSurvey Site Name:Survey Site Name:Country Pond					
Management Comments: Location Survey Site Name: Country Pond					
Survey Site Name: Country Pond					
• •					
County:RockinghamTown(s):KingstonSize:13.4 acresElevation:					
Precision: Within (but not necessarily restricted to) the area indicated on the map.					
Directions: 2019: Area 14608: Country Pond Road, Newton. 2018: Area 14472: Webster Wildlife and Natural Area. 2014: Area 13641M: Webster Wildlife and Natural Area. Area 13680: [Heath Street, Newton, near BandM railroad]. 2011: Area 13103: [Green Road north of Cedar Swamp Pond]. 2010: Area 12739M: Webster Wildlife and Natural Area. 1991: Area 6601: Ridge Road near Country Pond.					
Dates documented					
First reported:1991Last reported:2019-06-04					

The New Hampshire Fish & Game Department has jurisdiction over rare wildlife in New Hampshire. Please contact them at 11 Hazen Drive, Concord, NH 03301 or at (603) 271-2461.

CONFIDENTIAL – NH Dept. of Environmental Services review

United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Rockingham County, New Hampshire**

Unitil Kingston Solar Project

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

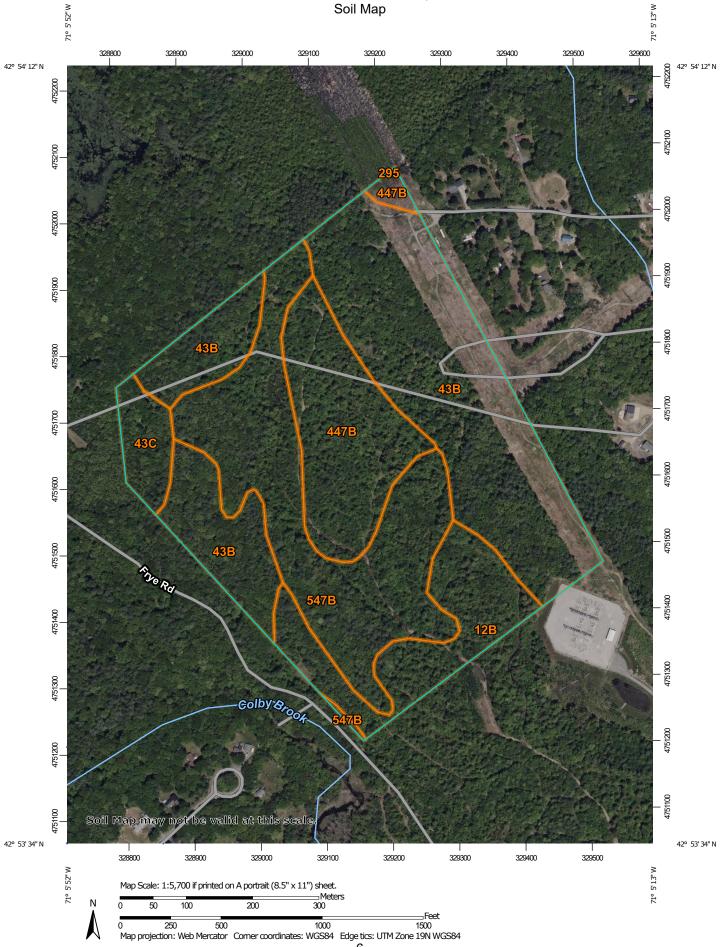
Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.


Contents

Preface	2
Soil Map	5
Soil Map	6
Legend	7
Map Unit Legend	8
Map Unit Descriptions	8
Rockingham County, New Hampshire	
12B—Hinckley loamy sand, 3 to 8 percent slopes	
43B—Canton fine sandy loam, 0 to 8 percent slopes, very stony	11
43C—Canton fine sandy loam, 8 to 15 percent slopes, very stony	13
295—Freetown mucky peat, 0 to 2 percent slopes	15
447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony	16
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	18

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND)	MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.
Soils	Soil Map Unit Polygons	00 12	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.
ĩ	Soil Map Unit Lines Soil Map Unit Points	 ∧	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of
ဖ	Point Features Blowout	Water Fea		contrasting soils that could have been shown at a more detailed scale.
⊠ ※	Borrow Pit Clay Spot	Transport	tation Rails	Please rely on the bar scale on each map sheet for map measurements.
☆	Closed Depression Gravel Pit	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
°. O	Gravelly Spot Landfill Lava Flow	%	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts
۸ بینے ج	Marsh or swamp	Background Aerial Photography		distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
~ +	Rock Outcrop Saline Spot			Soil Survey Area: Rockingham County, New Hampshire Survey Area Data: Version 25, Sep 12, 2022
·. •	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
 	Sinkhole Slide or Slip			Date(s) aerial images were photographed: May 22, 2022—Jun 5, 2022
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
12B	Hinckley loamy sand, 3 to 8 percent slopes	10.1	11.7%
43B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	36.7	42.7%
43C	Canton fine sandy loam, 8 to 15 percent slopes, very stony	3.1	3.6%
295	Freetown mucky peat, 0 to 2 percent slopes	0.0	0.0%
447B	Scituate-Newfields complex, 3 to 8 percent slopes, very stony	13.2	15.3%
547B	Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	23.0	26.7%
Totals for Area of Interest		86.0	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor

components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

12B—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Outwash deltas, outwash terraces, moraines, kames, outwash plains, kame terraces, eskers

Landform position (two-dimensional): Summit, shoulder, backslope, footslope

Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A *Ecological site:* F144AY022MA - Dry Outwash *Hydric soil rating:* No

Minor Components

Windsor

Percent of map unit: 8 percent Landform: Outwash deltas, outwash terraces, moraines, kames, outwash plains, kame terraces, eskers Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread Down-slope shape: Concave, convex, linear

Across-slope shape: Convex, linear, concave Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent
Landform: Outwash deltas, outwash terraces, moraines, outwash plains, kame terraces
Landform position (two-dimensional): Backslope, footslope
Landform position (three-dimensional): Head slope, side slope, base slope, tread
Down-slope shape: Concave, linear
Across-slope shape: Concave, linear
Hydric soil rating: No

Agawam

Percent of map unit: 2 percent

Landform: Outwash deltas, outwash terraces, moraines, kames, outwash plains, kame terraces, eskers

Landform position (two-dimensional): Summit, shoulder, backslope, footslope Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread

Down-slope shape: Concave, convex, linear *Across-slope shape:* Convex, linear, concave *Hydric soil rating:* No

43B—Canton fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w81l Elevation: 0 to 1,180 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Canton, very stony, and similar soils: 80 percent *Minor components:* 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton, Very Stony

Setting

Landform: Hills, ridges, moraines Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Scituate, very stony

Percent of map unit: 9 percent Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Montauk, very stony

Percent of map unit: 5 percent Landform: Recessionial moraines, hills, ground moraines, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Gloucester, very stony

Percent of map unit: 4 percent Landform: Ridges, moraines, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 2 percent Landform: Bogs, swamps, marshes, kettles, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

43C—Canton fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w814 Elevation: 0 to 1,160 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Canton, very stony, and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Canton, Very Stony

Setting

Landform: Ridges, moraines, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam

Bw2 - 16 to 22 inches: gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural stratification
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands Hydric soil rating: No

Minor Components

Montauk, very stony

Percent of map unit: 6 percent Landform: Recessionial moraines, hills, ground moraines, drumlins Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Scituate, very stony

Percent of map unit: 5 percent Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Chatfield, very stony

Percent of map unit: 3 percent Landform: Ridges, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 1 percent *Landform:* Swamps, marshes, kettles, depressions, bogs *Down-slope shape:* Concave *Across-slope shape:* Concave *Hydric soil rating:* Yes

295—Freetown mucky peat, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2w68v Elevation: 0 to 860 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 145 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Freetown and similar soils: 82 percent *Minor components:* 18 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Freetown

Setting

Landform: Marshes, kettles, swamps, depressions, bogs Down-slope shape: Concave Across-slope shape: Concave Parent material: Moderately decomposed organic material

Typical profile

Oe1 - 0 to 2 inches: mucky peat *Oe2 - 2 to 79 inches:* mucky peat

Properties and qualities

Slope: 0 to 1 percent
Surface area covered with cobbles, stones or boulders: 0.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Available water supply, 0 to 60 inches: Very high (about 20.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: B/D Ecological site: F144AY043MA - Acidic Organic Wetlands Hydric soil rating: Yes

Minor Components

Swansea

Percent of map unit: 8 percent Landform: Swamps, marshes, kettles, depressions, bogs Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Natchaug

Percent of map unit: 6 percent Landform: Depressions, depressions, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Scarboro

Percent of map unit: 3 percent Landform: Outwash deltas, outwash terraces, drainageways, depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Whitman

Percent of map unit: 1 percent Landform: Hills, depressions Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cnr Elevation: 0 to 1,000 feet Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Scituate and similar soils: 50 percent Newfields and similar soils: 25 percent Minor components: 25 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scituate

Typical profile

- H1 0 to 8 inches: fine sandy loam
- H2 8 to 32 inches: cobbly fine sandy loam
- H3 32 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Description of Newfields

Setting

Parent material: Till

Typical profile

H1 - 0 to 9 inches: fine sandy loam H2 - 9 to 35 inches: fine sandy loam H3 - 35 to 64 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY008CT - Moist Till Uplands Hydric soil rating: No

Minor Components

Walpole

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Ridgebury

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Canton

Percent of map unit: 5 percent Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent Hydric soil rating: No

547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cpd Elevation: 0 to 2,100 feet Mean annual precipitation: 28 to 48 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 100 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Walpole

Setting

Landform: Depressions

Typical profile

H1 - 0 to 7 inches: very fine sandy loam

- H2 7 to 16 inches: sandy loam
- H3 16 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent

Custom Soil Resource Report

Surface area covered with cobbles, stones or boulders: 0.1 percent Depth to restrictive feature: More than 80 inches Drainage class: Poorly drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: About 0 to 12 inches Frequency of flooding: None Frequency of ponding: None Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

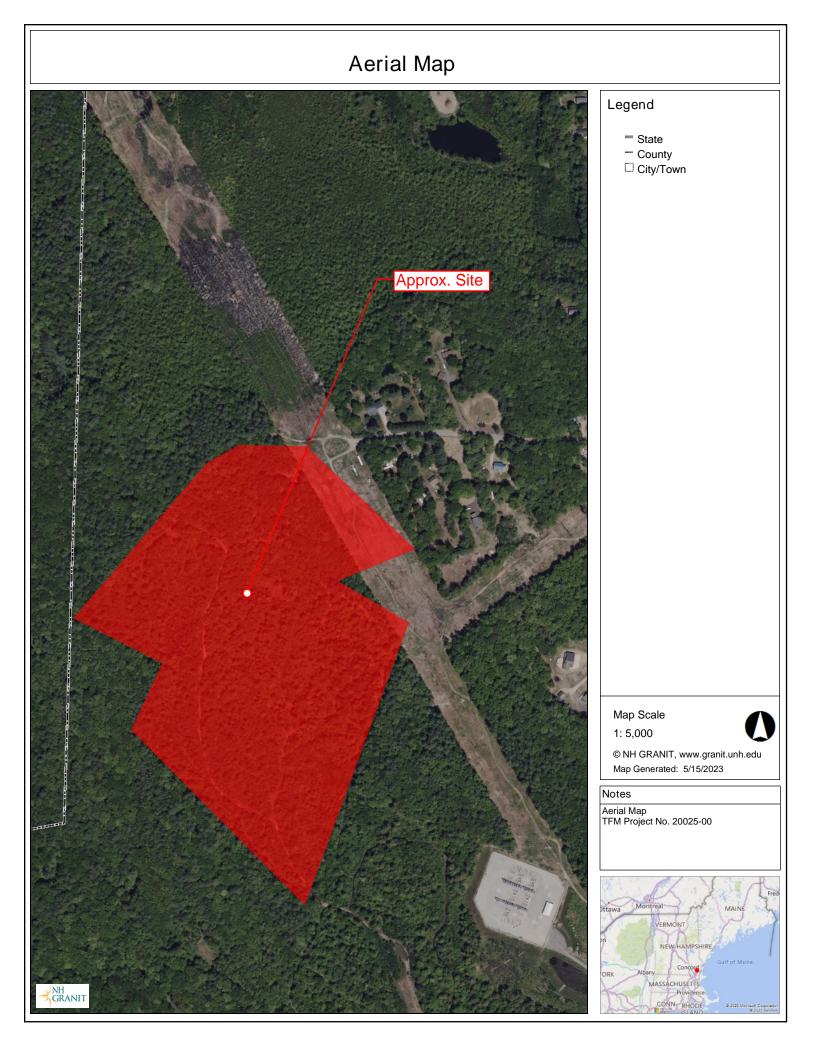
Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A/D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Minor Components

Scarboro

Percent of map unit: 10 percent Landform: Depressions Hydric soil rating: Yes

Newfields


Percent of map unit: 5 percent Hydric soil rating: No

Squamscott

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624


United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

National Flood Hazard Layer FIRMette

Legend

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

Project Tit	Project Title:					
Unitil King	ston Solar Project (20025-00)					
PHOTO LC)G					
Photo #	NH DHR Inventory # and/or Locational Information					
1	An image of the class VI Towel Road extension facing north					
2	Image captures Towel Road and a rock wall facing northeast					
3	Image captures the intersection between Towel Road and the access road facing southwest					
4	The image captures Towle Road, facing southwest					
5	The image captures the part of the northern wetland, facing north					
6	The photograph captures the site around the center wetland, facing north					
7	The image captures the part of the southern wetland, facing south					
8	The image captures the southeastern wetland, facing northwest					
9	The image captures the western wetland, facing northwest					
10	The image captures the sightline of Towle Road and Mill Road Intersection, facing north					
11	The image captures the sightline of Towle Road and Mill Road Intersection, facing south					
12	The image captures the access into Towle Road, facing south					

Unitil Kingston Solar Project – Site Photographs

Photo 1

An image of the class VI Towel Road extension facing north (9/28/2022).

Photo 2

Image captures Towel Road and a rock wall facing northeast (9/28/2022).

Photo 3

Image captures the intersection between Towel Road and the access road facing southwest (9/28/2022).

Photo 4

The image captures Towle Road, facing southwest (9/28/2022).

The image captures the part of the northern wetland, facing north (1/3/2023). Photo 6

The photograph captures the site around the center wetland, facing north (1/3/2023).

Photo 7

The image captures the part of the southern wetland, facing south (1/3/2023). Photo 8

The image captures the southeastern wetland, facing northwest (1/3/2023).

Photo 9

The image captures the western wetland, facing northwest (1/11/2023).

Photo 10

The image captures the sightline of Towle Road and Mill Road Intersection, facing north (5/19/2023).

Photo 11

The image captures the sightline of Towle Road and Mill Road Intersection, facing south (5/19/2023).

Photo 12

The image captures the access into Towle Road, facing south (5/19/2023).

Project Tit	Project Title:					
Unitil King	Unitil Kingston Solar Project (20025-00)					
PHOTO LC)G					
Photo #	NH DHR Inventory # and/or Locational Information					
1	An image of the class VI Towel Road extension facing north					
2	Image captures Towel Road and a rock wall facing northeast					
3	Image captures the intersection between Towel Road and the access road facing southwest					
4	The image captures Towle Road, facing southwest					
5	The image captures the part of the northern wetland, facing north					
6	The photograph captures the site around the center wetland, facing north					
7	The image captures the part of the southern wetland, facing south					
8	The image captures the southeastern wetland, facing northwest					
9	The image captures the western wetland, facing northwest					
10	The image captures the sightline of Towle Road and Mill Road Intersection, facing north					
11	The image captures the sightline of Towle Road and Mill Road Intersection, facing south					
12	The image captures the access into Towle Road, facing south					

<u>Unitil Kingston Solar Project – Site Photographs</u>

Photo 1

An image of the class VI Towel Road extension facing north (9/28/2022).

Photo 2

Image captures Towel Road and a rock wall facing northeast (9/28/2022).

Photo 3

Image captures the intersection between Towel Road and the access road facing southwest (9/28/2022).

Photo 4

The image captures Towle Road, facing southwest (9/28/2022).

Photo 5

The image captures the part of the northern wetland, facing north (1/3/2023). Photo 6

The photograph captures the site around the center wetland, facing north (1/3/2023).

Photo 7

The image captures the part of the southern wetland, facing south (1/3/2023). Photo 8

The image captures the southeastern wetland, facing northwest (1/3/2023).

Photo 9

The image captures the western wetland, facing northwest (1/11/2023).

Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists

Photo 10

The image captures the sightline of Towle Road and Mill Road Intersection, facing north (5/19/2023).

Photo 11

The image captures the sightline of Towle Road and Mill Road Intersection, facing south (5/19/2023).

Photo 12

The image captures the access into Towle Road, facing south (5/19/2023).

Extreme Precipitation Tables

Northeast Regional Climate Center

Data represents point estimates calculated from partial duration series. All precipitation amounts are displayed in inches.

	Metadata for Point							
Smoothing	Yes							
State								
Location								
Latitude	42.901 degrees North							
Longitude	71.091 degrees West							
Elevation	50 feet							
Date/Time	Tue Jun 06 2023 10:04:24 GMT-0400 (Eastern Daylight Time)							

Extreme Precipitation Estimates

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.27	0.41	0.51	0.66	0.83	1.05	1yr	0.71	0.99	1.22	1.57	2.02	2.62	2.82	1yr	2.32	2.71	3.13	3.81	4.44	1yr
2yr	0.33	0.50	0.62	0.82	1.03	1.31	2yr	0.89	1.19	1.52	1.93	2.46	3.14	3.48	2yr	2.78	3.34	3.86	4.57	5.22	2yr
5yr	0.38	0.59	0.75	1.00	1.28	1.64	5yr	1.10	1.49	1.92	2.44	3.12	3.99	4.47	5yr	3.53	4.30	4.93	5.85	6.61	5yr
10yr	0.43	0.67	0.85	1.15	1.50	1.94	10yr	1.30	1.76	2.28	2.93	3.75	4.79	5.41	10yr	4.24	5.20	5.92	7.06	7.91	10yr
25yr	0.50	0.80	1.02	1.40	1.86	2.44	25yr	1.61	2.20	2.88	3.71	4.77	6.10	6.96	25yr	5.40	6.69	7.56	9.05	10.03	25yr
50yr	0.57	0.91	1.17	1.63	2.19	2.90	50yr	1.89	2.61	3.43	4.45	5.72	7.32	8.43	50yr	6.48	8.10	9.09	10.94	12.02	50yr
100yr	0.64	1.04	1.34	1.90	2.59	3.45	100yr	2.23	3.09	4.11	5.34	6.88	8.80	10.21	100yr	7.79	9.82	10.94	13.22	14.41	100yr
200yr	0.73	1.20	1.55	2.21	3.05	4.10	200yr	2.63	3.67	4.90	6.39	8.25	10.58	12.37	200yr	9.36	11.90	13.17	15.99	17.28	200yr
500yr	0.87	1.43	1.87	2.71	3.80	5.16	500yr	3.28	4.60	6.19	8.11	10.51	13.51	15.95	500yr	11.95	15.34	16.84	20.59	22.00	500yr

Lower Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.24	0.37	0.45	0.60	0.74	0.88	1yr	0.64	0.86	1.02	1.28	1.56	2.28	2.60	1yr	2.02	2.50	2.91	3.55	4.00	1yr
2yr	0.32	0.49	0.60	0.81	1.00	1.19	2yr	0.87	1.16	1.36	1.80	2.30	3.04	3.35	2yr	2.69	3.22	3.74	4.40	5.03	2yr
5yr	0.36	0.56	0.69	0.95	1.20	1.42	5yr	1.04	1.39	1.61	2.09	2.69	3.66	4.06	5yr	3.24	3.90	4.50	5.48	6.05	5yr
10yr	0.40	0.62	0.76	1.07	1.38	1.63	10yr	1.19	1.60	1.82	2.36	3.01	4.19	4.67	10yr	3.71	4.49	5.17	6.43	6.90	10yr
25yr	0.46	0.70	0.88	1.25	1.65	1.95	25yr	1.42	1.91	2.13	2.74	3.51	4.98	5.62	25yr	4.41	5.41	6.24	7.92	8.73	25yr
50yr	0.51	0.78	0.97	1.40	1.88	2.24	50yr	1.63	2.19	2.40	3.07	3.93	5.67	6.44	50yr	5.02	6.20	7.17	9.30	10.10	50yr
100yr	0.58	0.88	1.10	1.58	2.17	2.56	100yr	1.88	2.51	2.70	3.44	4.40	6.40	7.37	100yr	5.67	7.09	8.27	10.92	11.68	100yr
200yr	0.65	0.98	1.24	1.79	2.50	2.93	200yr	2.16	2.87	3.03	3.85	4.94	7.25	9.59	200yr	6.42	9.22	9.54	12.84	13.52	200yr
500yr	0.76	1.13	1.46	2.12	3.02	3.52	500yr	2.60	3.44	3.54	4.46	5.76	8.52	11.81	500yr	7.54	11.36	11.53	15.94	16.39	500yr

Upper Confidence Limits

	5min	10min	15min	30min	60min	120min		1hr	2hr	3hr	6hr	12hr	24hr	48hr		1day	2day	4day	7day	10day	
1yr	0.29	0.45	0.55	0.74	0.90	1.08	1yr	0.78	1.06	1.26	1.67	2.11	2.87	3.15	1yr	2.54	3.03	3.44	4.05	4.83	1yr
2yr	0.34	0.52	0.64	0.86	1.07	1.27	2yr	0.92	1.24	1.47	1.92	2.45	3.29	3.64	2yr	2.91	3.50	4.03	4.77	5.49	2yr
5yr	0.41	0.63	0.79	1.08	1.37	1.63	5yr	1.19	1.60	1.88	2.45	3.12	4.33	4.93	5yr	3.83	4.74	5.41	6.24	7.19	5yr
10yr	0.49	0.76	0.94	1.31	1.69	1.99	10yr	1.46	1.95	2.28	2.96	3.74	5.39	6.22	10yr	4.77	5.98	6.77	7.73	8.95	10yr
25yr	0.62	0.95	1.18	1.68	2.21	2.60	25yr	1.91	2.54	2.96	3.82	4.77	7.20	8.49	25yr	6.37	8.17	9.11	10.29	11.31	25yr
50yr	0.74	1.12	1.40	2.01	2.70	3.18	50yr	2.33	3.11	3.61	4.63	5.74	8.97	10.77	50yr	7.94	10.36	11.41	12.78	13.89	50yr
100yr	0.88	1.33	1.67	2.42	3.31	3.88	100yr	2.86	3.79	4.40	5.62	6.92	11.26	13.65	100yr	9.97	13.12	14.28	15.88	17.11	100yr
200yr	1.05	1.58	2.01	2.90	4.05	4.75	200yr	3.49	4.64	5.39	6.83	8.34	14.08	15.52	200yr	12.46	14.92	17.88	19.72	21.08	200yr
500yr	1.33	1.99	2.56	3.71	5.28	6.19	500yr	4.56	6.05	7.02	8.84	10.69	18.92	20.82	500yr	16.75	20.02	24.07	26.28	27.82	500yr

GROUNDWATER RECHARGE VOLULME (GRV) CALCULATION (Env-Wq 1507.04)

-	ас	Area of HSG A soil that was replaced by impervious cover	0.40"
0.03	ас	Area of HSG B soil that was replaced by impervious cover	0.25"
0.19	ас	Area of HSG C soil that was replaced by impervious cover	0.10"
-	ас	Area of HSG D soil or impervious cover that was replaced by impervious cover	0.0"
0.12	inches	Rd = Weighted groundwater recharge depth	
0.0265	ac-in	GRV = AI * Rd	
96	cf	GRV conversion (ac-in x 43,560 sf/ac x 1ft/12")	

Provide calculations below showing that the project meets the groundwater recharge requirements (Env-Wq 1507.04):

Bio-Retention Area = 49,865 cf

Calculated by J. Belanger, PE 7/6/2023 Revised by J. Belanger, PE 9/1/2023

FILTRATION PRACTICE DESIGN CRITERIA (Env-Wq 1508.07)

Type/Node Name:

BIO-RETENTION AREA #1 (BIO#1)

Enter the type of filtration practice (e.g., bioretention system) and the node name in the drainage analysis, if applicable.

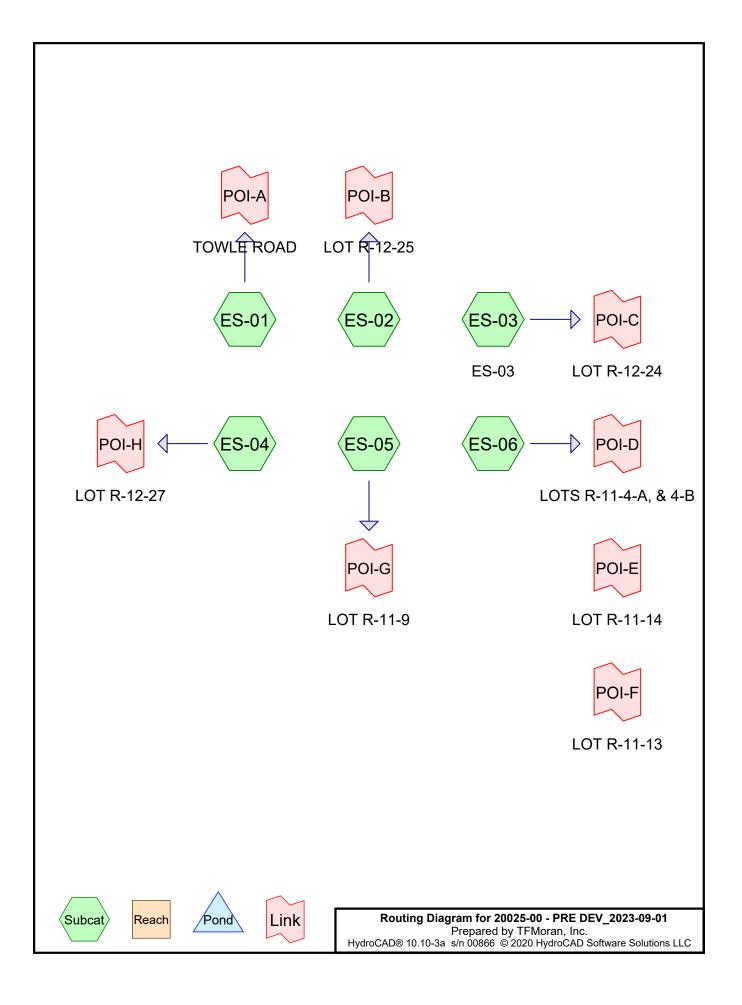
YES		Check if you reviewed the restrictions on unlined systems outlined in Env-Wq 1508.0	7(a)
19.80	- ac	A = Area draining to the practice	, (u).
0.04	-	A_{I} = Impervious area draining to the practice	
	decimal	I = Percent impervious area draining to the practice, in decimal form	
	unitless	Rv = Runoff coefficient = 0.05 + (0.9 x I)	
	ac-in	$WQV=1" \times Rv \times A$	
3,722	-	WQV conversion (ac-in x 43,560 sf/ac x 1ft/12")	
931	-	25% x WQV (check calc for sediment forebay volume)	
2,792	cf	75% x WQV (check calc for surface sand filter volume)	
FOR	EBAY	Method of Pretreatment? (not required for clean or roof runoff)	
6,135	cf	V _{SED} = Sediment forebay volume, if used for pretreatment	<u>></u> 25%WQV
Calculate ti	ime to drain	if system IS NOT underdrained:	
23,384	sf	A _{SA} = Surface area of the practice	
1.70	- iph	Ksat _{DESIGN} = Design infiltration rate ¹	
	_ ·	If Ksat (prior to factor of safety) is < 0.50 iph, has an underdrain been provided?	
	Yes/No	(Use the calculations below)	
1.1	hours	$T_{DRAIN} = Drain time = V / (A_{SA} * I_{DESIGN})$	<u><</u> 72-hrs
Calculate ti	ime to drain	if system IS underdrained:	
	ft	E _{WQV} = Elevation of WQV (attach stage-storage table)	
	- ,		
	cfs	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table)	
-	cfs hours	Q_{WQV} = Discharge at the E_{WQV} (attach stage-discharge table) T _{DRAIN} = Drain time = 2WQV/Q _{WQV}	<u><</u> 72-hrs
- 166.50	hours		<u><</u> 72-hrs
	hours	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$	<u><</u> 72-hrs
	hours feet feet	T_{DRAIN} = Drain time = 2WQV/Q _{WQV} E _{FC} = Elevation of the bottom of the filter course material ²	
166.50	hours feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable$	it)
166.50	hours feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test provide)$	it)
166.50 163.66	hours feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p)$	it) pit)
166.50 163.66 166.50 166.50	hours feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$ $E_{UD} = Invert elevation of the underdrain (UD), if applicable$ $E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p)$ $E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p)$ $D_{FC to UD} = Depth to UD from the bottom of the filter course$	it) pit) ≥ 1'
166.50 163.66 166.50 166.50	hours feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$ $E_{UD} = Invert elevation of the underdrain (UD), if applicable$ $E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p)$ $E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p)$ $D_{FC to UD} = Depth to UD from the bottom of the filter course$ $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course$	it) pit) ≥1' ≥1'
166.50 163.66 166.50 166.50 2.84	hours feet feet feet feet feet feet feet	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice$	it) pit) ≥1' ≥1'
166.50 163.66 166.50 166.50 2.84 170.15 170.50 YES	hours feet feet feet feet feet feet ft ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2$ $E_{UD} = Invert elevation of the underdrain (UD), if applicable$ $E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p)$ $E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p)$ $D_{FC to UD} = Depth to UD from the bottom of the filter course$ $D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course$ $D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course$ Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation <u><</u> Elevation of the top of the practice	it) pit) ≥1' ≥1'
166.50 163.66 166.50 2.84 170.15 170.50 YES If a surface	hours feet feet feet feet feet feet ft ft	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test processes the elevation of bedrock (if none found, enter the lowest elevation of the test processes the elevation of bedrock (if none found, enter the lowest elevation of the test processes the elevation of the bottom of the filter course D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed:$	it) pit) ≥ 1' ≥ 1' ≥ 1'
166.50 163.66 166.50 166.50 2.84 170.15 170.50 YES	hours feet feet feet feet feet feet ft ft sand filter ac	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test preserves and the elevation of bedrock (if none found, enter the lowest elevation of the test preserves and the preserves and the elevation of the bottom of the filter course and the elevation of the bottom of the filter course and the preserves and the elevation of the SHWT from the bottom of the filter course and the elevation of the solution $	it) pit) ≥1' ≥1' ≥1' ≥1'
166.50 163.66 166.50 2.84 170.15 170.50 YES If a surface	hours feet feet feet feet feet feet ft sand filter	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test processes the elevation of bedrock (if none found, enter the lowest elevation of the test processes the elevation of bedrock (if none found, enter the lowest elevation of the test processes the elevation of the bottom of the filter course D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice or underground sand filter is proposed:$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV
166.50 163.66 166.50 2.84 170.15 170.50 YES If a surface	hours feet feet feet feet feet feet ft ft sand filter ac	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test preserves and the elevation of bedrock (if none found, enter the lowest elevation of the test preserves and the preserves and the elevation of the bottom of the filter course and the elevation of the bottom of the filter course and the preserves and the elevation of the SHWT from the bottom of the filter course and the elevation of the solution $	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac
166.50 163.66 166.50 2.84 170.15 170.50 YES If a surface	hours feet feet feet feet feet feet ft ft sand filter ac cf inches	T _{DRAIN} = Drain time = $2WQV/Q_{WQV}$ E_{FC} = Elevation of the bottom of the filter course material ² E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test $D_{FC to UD}$ = Depth to UD from the bottom of the filter course $D_{FC to ROCK}$ = Depth to bedrock from the bottom of the filter course $D_{FC to SHWT}$ = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation \leq Elevation of the top of the practice or underground sand filter is proposed: Drainage Area check. V = Volume of storage ³ (attach a stage-storage table)	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if
166.50 163.66 166.50 2.84 170.15 170.50 YES If a surface NO	hours feet feet feet feet feet feet ft ft sand filter ac cf inches	$T_{DRAIN} = Drain time = 2WQV/Q_{WQV}$ $E_{FC} = Elevation of the bottom of the filter course material2 E_{UD} = Invert elevation of the underdrain (UD), if applicable E_{SHWT} = Elevation of SHWT (if none found, enter the lowest elevation of the test p) E_{ROCK} = Elevation of bedrock (if none found, enter the lowest elevation of the test p) D_{FC to UD} = Depth to UD from the bottom of the filter course D_{FC to ROCK} = Depth to bedrock from the bottom of the filter course D_{FC to SHWT} = Depth to SHWT from the bottom of the filter course Peak elevation of the 50-year storm event (infiltration can be used in analysis) Elevation of the top of the practice 50 peak elevation < Elevation of the top of the practice Drainage Area check. V = Volume of storage3 (attach a stage-storage table) D_{FC} = Filter course thickness$	it) pit) ≥ 1' ≥ 1' ≥ 1' ← yes < 10 ac ≥ 75%WQV 18", or 24" if

If a bioretention ar	ea is proposed:	
NO ac	Drainage Area no larger than 5 ac?	← yes
49,865 cf	V = Volume of storage ³ (attach a stage-storage table)	<u>></u> WQV
inches 18.0	D _{FC} = Filter course thickness	18", or 24" if within GPA
Sheet	Note what sheet in the plan set contains the filter course specification	
3.0 :1	Pond side slopes	<u>> 3</u> :1
Sheet	Note what sheet in the plan set contains the planting plans and surface cover	
If porous pavemen	t is proposed:	
	Type of pavement proposed (Concrete? Asphalt? Pavers? Etc.)	
acres	A _{SA} = Surface area of the pervious pavement	
:1	Ratio of the contributing area to the pervious surface area	≤ 5:1
inches	D _{FC} = Filter course thickness	12", or 18" if within GPA
Sheet	Note what sheet in the plan set contains the filter course spec.	mod. 304.1 (see spec)

1. Rate of the limiting layer (either the filter course or the underlying soil). Ksat_{design} includes factor of safey. See Env-Wq 1504.14 for guidance on determining the infiltration rate.

2. See lines 34, 40 and 48 for required depths of filter media.

3. Volume without depending on infiltration. The volume includes the storage above the filter (but below the invert of the outlet stucture, if any), the filter media voids, and the pretreatment area. The storage above the filter media shall not include the volume above the outlet structure, if any.


Designer's Notes:			
ESHWT per TP #8			
IT per IT #8			
Calculated by J. Belange	er, PE 7/6/2023		
Revised by J. Belanger,	PE 9/1/2023		

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

ElevationSurfaceStorageElevationSurfaceStorage $(feet)$ (sq-ft)(cubic-feet)(feet)(sq-ft)(cubic-feet)166:5523:3840169:2534:93254:933166:6523:3841,403169:3535:29458:431166:6523:3841,403169:3536:01861:996166:7523:3842:338169:4036:38065:834166:8523:3842:806169:4536:74165:634166:9023:3843:274169:5037:10367:480166:9523:3844:209169:6037:82771:227167:0523:3845:141169:7538:19973:127167:0523:3845:612169:7538:91376:982167:1523:3846:548169:8539:63680:901167:2023:3846:548169:9540:38088:2901167:3023:3841:69:9039:99882.901167:3023:3841:69:9039:99882.901167:5023:3841:69:9039:99882.901167:5523:3841:69:9039:9982:36:492167:4023:3841:69:9039:99810:56:61167:7523:3841:69:9039:99810:65:16167:7523:3841:69:90170:3022:298167:6523:3841:69:90170:3022:398167:6023:3841:69:69 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th></t<>						
$ \begin{bmatrix} 166.50 & 23.384 & 0 \\ 166.55 & 23.384 & 468 \\ 169.20 & 34.932 & 56.675 \\ 166.60 & 23.384 & 1,403 \\ 169.30 & 35.656 & 00.205 \\ 166.75 & 23.384 & 1,403 \\ 169.30 & 35.656 & 00.205 \\ 166.75 & 23.384 & 2.338 \\ 19.40 & 36.380 & 61.996 \\ 166.85 & 23.384 & 2.338 \\ 19.40 & 36.380 & 63.806 \\ 166.85 & 23.384 & 3.274 \\ 169.55 & 37.465 & 09.345 \\ 166.95 & 23.384 & 3.274 \\ 169.55 & 37.465 & 09.345 \\ 166.95 & 23.384 & 4.677 \\ 169.65 & 33.84 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 5.612 \\ 167.10 & 23.384 & 6.488 \\ 169.85 & 39.636 & 80.910 \\ 167.25 & 23.384 & 6.488 \\ 169.85 & 39.636 & 80.910 \\ 167.25 & 23.384 & 16.92 \\ 167.15 & 23.384 & 16.92 \\ 167.15 & 23.384 & 16.92 \\ 167.15 & 23.384 & 16.92 \\ 167.15 & 23.384 & 16.92 \\ 167.25 & 23.384 & 16.92 \\ 167.45 & 23.384 & 16.92 \\ 167.45 & 23.384 & 16.92 \\ 170.00 & 40.722 & 86.937 \\ 167.55 & 23.384 & 11.692 \\ 170.10 & 121.475 & 95.047 \\ 167.55 & 23.384 & 10.523 \\ 170.05 & 81.099 & 89.982 \\ 167.45 & 23.384 & 12.661 \\ 170.10 & 121.475 & 95.047 \\ 167.55 & 23.384 & 12.661 \\ 170.10 & 121.475 & 95.047 \\ 167.55 & 23.384 & 12.661 \\ 170.10 & 121.475 & 95.047 \\ 167.75 & 23.384 & 15.200 \\ 170.25 & 242.606 & 134.920 \\ 167.70 & 23.384 & 15.200 \\ 170.25 & 242.606 & 134.920 \\ 167.90 & 23.384 & 15.200 \\ 170.25 & 242.606 & 122.353 \\ 167.65 & 23.384 & 15.200 \\ 170.25 & 242.606 & 122.353 \\ 167.65 & 23.384 & 19.876 \\ 170.45 & 404.112 & 187.025 \\ 167.80 & 23.384 & 23.844 \\ 188.00 & 23.384 & 23.844 \\ 188.00 & 23.384 & 23.844 \\ 188.00 & 23.384 & 23.844 \\ 188.00 & 23.384 & 23.844 \\ 188.00 & 23.384 & 23.844 \\ 188.00 & 23.84 & 23.844 \\ 188.00 & 23.844 & 23.844 \\ 188.00 & 23.844 & 23.844 \\ 188.00 & 25.697 & 33.277 \\ 188.65 & 26.611 & 45.822 \\ 188.35 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.45 & 26.661 & 45.822 \\ 188.90 & 26.854 & 47.160 \\ 188.95 & 27.046 & 44.908 \\ 189.00 & 27$	Elevation	Surface		Elevation	Surface	
16616623,384468169,20 $34,932$ $56,675$ 16623,3841,403169,25 $35,294$ $58,431$ 166,7023,3841,871169,35 $36,018$ $61,996$ 166,7523,3842,806169,45 $36,741$ $65,634$ 166,8023,3843,274169,55 $37,465$ $69,345$ 166,9023,3843,274169,55 $37,465$ $69,345$ 166,9023,3844,209169,60 $37,827$ $71,227$ 167,0023,3845,612169,75 $38,913$ $76,982$ 167,1023,3845,612169,75 $38,913$ $76,982$ 167,1023,3845,612169,75 $38,913$ $76,982$ 167,1523,3846,548169,85 $39,636$ $80,910$ 167,2023,3847,015169,95 $40,360$ $84,910$ 167,3023,3849,354170,00 $40,722$ $86,937$ 167,4023,38410,523170,05 $81,099$ $89,982$ 167,4523,38412,861170,15161,852102,130167,5523,38412,861170,15161,852102,130167,6523,38412,861170,15161,852102,133167,6523,38412,861170,15144,489208,240167,7523,38412,861170,15444,489208,240167,7523,38412,869170,30282,982135,492 <td>(feet)</td> <td>(sq-ft)</td> <td>(cubic-feet)</td> <td>(feet)</td> <td>(sq-ft)</td> <td>(cubic-feet)</td>	(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
166.5523.384468169.20 34.932 56.675166.6523.3841,403169.3535.65660.205166.7023.3841,871169.3536.01861.996166.7523.3842.338169.4036.38063.806166.8023.3842.066169.4536.74165.634166.8023.3843.274169.5537.46569.345166.9523.3843.274169.5537.46569.345166.9523.3844.607169.6037.82771.227167.0023.3845.612169.7538.91376.982167.1523.3845.642169.7538.91376.982167.1523.3846.548169.8539.63680.910167.2023.3847.015169.9540.36084.910167.3023.3849.354170.0040.72286.937167.4023.38410.523170.0581.09989.982167.4523.38410.523170.0581.09989.982167.4523.38412.861170.15161.852102.133167.6523.38412.861170.15161.852102.133167.6523.38412.809170.30282.982135.492167.7523.38412.861170.15161.852102.133167.6523.38412.809170.30282.982135.492167.7523.38412.809170.30<	166.50	23,384	0	169.15	34,570	54,938
166.6023,384935169.2535,29458,431166.6023,3841,403169.3035,65660,205166.7023,3842,338169.4036,38063,380166.8523,3842,206169.4537,74165,634166.8523,3843,744169.5537,46566,345166.9523,3844,209169.6037,82771,227167.0023,3845,144169.7538,91376,962167.1023,3845,612169.7538,91376,962167.1023,3845,612169.7538,91376,962167.1523,3846,080169.8039,27578,937167.2023,3846,648169.8539,63660,910167.3523,3849,354170.0040,72286,937167.4523,38410,623170.0581,09989,982167.4523,38411,692170.15161,852102,130167.5023,38412,661170.15161,852102,130167.5523,38415,200170.25242,606122,353167.6023,38415,200170.25242,606122,353167.6023,38415,200170.25242,606122,353167.6023,38415,200170.25242,606122,353167.6023,38412,651170.40363,736167,828167.8523,38412,653150,	166.55		468	169.20	34,932	56,675
166.6523.3841.403169.3035.66660.205166.7023.3842.338169.4036.38061.996166.7523.3842.338169.4036.38063.806166.8023.3843.274169.5537.46569.345166.9023.3843.274169.5537.46569.345166.9523.3844.209199.6037.82771.227167.0023.3845.612199.7038.55175.046167.1023.3845.612199.7538.91376.982167.1523.3846.080169.8039.27578.937167.2023.3846.548199.8539.63680.910167.2523.3847.015169.9039.99882.901167.3023.38410.523170.0581.09989.982167.4023.38410.523170.0581.09989.982167.4523.38410.523170.0581.09989.982167.4523.38412.201170.20202.229111.232167.6523.38414.030170.20202.229111.232167.6523.38416.269170.30282.982135.492167.7523.38416.269170.30282.982135.492167.7523.38416.269170.30282.982135.492167.6523.38416.269170.30282.982135.492167.6523.38416.269170	166.60			169.25		
166.7023.3841.871169.3536.01861.996166.7523.3842.338169.4036.38063.806166.8023.3843.274169.5537.10367.480166.9023.3843.741169.5537.46569.345166.9523.3844.209169.6037.82771.227167.0023.3844.677169.6538.18973.127167.0523.3845.612169.7538.91376.982167.1523.3846.080199.8039.27578.937167.2023.3846.048169.8039.27578.937167.2023.3846.048169.9039.99882.901167.3023.3849.354170.0040.72286.937167.4023.38410.523170.0581.09989.982167.4523.38416.200170.2020.229111.232167.6023.38415.200170.25242.606122.353167.6523.38415.200170.25242.606122.353167.6523.38415.200170.30282.982135.492167.7523.38416.369170.30282.982135.492167.6023.38415.200170.25242.606122.353167.6523.38415.38170.35323.359150.651167.7523.384175.38170.35323.359150.651167.7023.38423.8417					,	
166.7523.3842.338169.40 36.380 63.806 166.8023.3843.274169.55 37.465 69.345 166.9023.384 3.741 169.55 37.465 69.345 166.9523.384 4.209 169.60 37.827 71.227 167.0023.384 5.612 169.75 38.199 75.046 167.1023.384 5.612 169.75 38.913 76.982 167.1023.384 6.612 169.75 38.913 76.982 167.1523.384 6.080 169.80 39.275 78.937 167.2023.384 7.015 169.90 39.998 82.901 167.3523.384 9.354 170.00 40.722 86.937 167.4023.384 10.523 170.05 81.099 89.982 167.4523.384 10.523 170.05 81.099 89.982 167.4523.384 16.921 170.15 161.852 102.130 167.5523.384 16.369 170.30 282.982 135.492 167.6523.384 16.369 170.30 282.982 135.492 167.6523.384 19.876 170.45 404.112 187.025 167.6523.384 19.876 170.45 404.112 187.025 167.8523.384 19.876 170.45 404.112 187.025 167.8523.384 22.917 186.85 25.504 37.997 168.202						
166.8023.3842.806169.45 $36,741$ $65,634$ 166.8523.3843.274169.5037.103 $67,480$ 166.9023.3844.209169.60 $37,827$ $71,227$ 167.0023.3844.677169.6538.189 $73,127$ 167.0523.3845.612169.7538.91376.982167.1023.3845.612169.7538.91376.982167.1523.3846.548169.8539.63680.910167.2023.3846.548169.8539.63680.910167.2523.3847.015169.9039.99882.901167.3023.3849.354170.0040.72286.937167.4023.38410.523170.0581.09989.982167.4523.38411.692170.10121.47595.047167.5523.38415.200170.20202.229111.232167.6523.38416.369170.3028.2982135.492167.7023.38417.538170.35323.359150.651167.7523.38419.876170.45404.112187.025167.8523.38429.872135.492136.492167.9023.38419.876170.45404.112187.025167.6523.38419.876170.45404.112187.025167.6523.38420.520166.8220.52116.825167.8523.38423.8423.						
166.85 23.384 3.274 169.50 $37,103$ $67,480$ 166.90 23.384 3.741 169.55 $37,465$ $69,345$ 166.95 23.384 4.201 169.60 $37,827$ $71,227$ 167.00 23.384 5.141 169.70 $38,551$ $75,046$ 167.10 23.384 5.612 169.75 $38,913$ $76,982$ 167.15 23.384 6.080 169.80 39.275 $78,937$ 167.20 23.384 6.080 169.80 39.275 $78,937$ 167.25 23.384 7.015 169.90 39.998 82.901 167.30 23.384 8.184 169.95 40.360 $84,910$ 167.35 23.384 10.523 170.00 40.722 $86,937$ 167.40 23.384 10.523 170.00 40.722 $86,937$ 167.45 23.384 10.523 170.00 40.722 $86,937$ 167.45 23.384 10.523 170.00 40.722 $86,937$ 167.45 23.384 10.523 170.05 81.099 $89,982$ 167.45 23.384 15.200 170.25 242.606 122.353 167.65 23.384 15.200 170.30 282.982 135.492 167.75 23.384 15.200 170.30 282.982 135.492 167.75 23.384 19.67 170.40 363.736 167.828 167.85 23.577 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
166.90 23.384 3.741 169.55 37.465 69.345 166.95 23.384 4.209 169.60 37.827 71.227 167.00 23.384 5.144 169.70 38.551 75.046 167.10 23.384 5.612 169.75 38.913 76.982 167.15 23.384 6.080 169.80 39.275 78.937 167.20 23.384 6.548 169.85 39.636 80.910 167.25 23.384 6.548 169.85 39.636 80.910 167.25 23.384 9.354 170.05 81.099 89.998 2.901 167.35 23.384 9.354 170.05 81.099 89.982 167.40 23.384 10.523 170.05 81.099 89.982 167.45 23.384 16.921 170.10 121.475 95.047 167.50 23.384 16.921 170.10 121.475 95.047 167.60 23.384 16.369 170.20 202.229 111.232 167.60 23.384 16.369 170.20 202.229 111.232 167.70 23.384 16.369 170.35 323.359 150.651 167.75 23.384 17.538 170.35 323.359 150.651 167.70 23.384 19.877 170.40 363.736 167.828 167.80 23.384 22.915 170.45 444.489 208.240 167.85 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
166.95 23.384 4.677 169.65 37.827 71.227 167.05 23.384 4.677 169.65 38.189 73.127 167.05 23.384 5.612 169.75 38.913 76.982 167.15 23.384 6.080 169.80 39.275 78.937 167.20 23.384 6.548 169.85 39.636 80.910 167.30 23.384 7.015 169.90 39.998 82.901 167.35 23.384 9.354 170.00 40.722 86.937 167.40 23.384 10.523 170.05 81.099 89.982 167.45 23.384 11.692 170.10 21.475 95.047 167.50 23.384 12.861 170.15 161.852 102.130 167.55 23.384 16.369 170.20 202.229 111.232 167.65 23.384 16.369 170.30 282.982 135.492 167.75 23.384 16.369 170.30 282.982 135.492 167.75 23.384 16.369 170.30 282.982 135.492 167.75 23.384 19.876 170.45 404.112 187.025 167.85 23.384 23.84 170.35 323.359 150.651 167.85 23.384 23.84 170.45 404.112 187.025 167.85 23.384 23.84 23.84 16.852 24.348 30.520 168.10 <						
167.00 23.384 4.677 169.65 38.189 73.127 167.05 23.384 5.144 169.75 38.913 76.982 167.10 23.384 6.080 169.80 39.275 78.937 167.20 23.384 6.548 169.80 39.275 78.937 167.25 23.384 6.548 169.80 39.275 78.937 167.25 23.384 7.015 169.90 39.998 82.901 167.30 23.384 8.184 169.95 40.360 84.910 167.35 23.384 10.523 170.05 81.099 89.982 167.40 23.384 10.523 170.15 61.852 102.130 167.55 23.384 12.861 170.15 161.852 102.133 167.60 23.384 15.200 170.20 202.229 111.232 167.60 23.384 15.200 170.20 202.229 111.232 167.70 23.384 170.30 282.982 135.492 167.70 23.384 170.50 242.606 122.353 167.80 23.384 22.15 170.45 404.112 167.85 23.384 22.815 170.45 404.489 208.240 167.92 23.384 22.815 170.50 444.489 208.240 23.384 22.815 170.50 444.489 208.240 167.95 23.384 23.384 170.50 444.489 20						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
167.15 23.384 6.080 169.80 39.275 78.937 167.20 23.384 6.548 169.85 39.636 80.910 167.25 23.384 7.015 160.90 39.998 82.901 167.30 23.384 9.354 170.00 40.722 86.937 167.40 23.384 9.523 170.05 81.099 89.982 167.45 23.384 10.523 170.05 81.099 89.982 167.45 23.384 12.861 170.15 161.852 102.130 167.55 23.384 14.030 170.20 202.229 111.232 167.60 23.384 15.200 170.25 242.606 122.353 167.65 23.384 17.538 170.30 282.982 135.492 167.75 23.384 17.538 170.35 323.359 150.651 167.75 23.384 19.876 170.45 404.112 187.025 167.85 23.384 22.215 170.50 444.489 208.240 167.90 23.384 22.215 170.50 444.489 208.240 167.90 23.384 22.9307 168.52 24.348 30.520 168.00 23.577 25.727 168.65 25.904 37.997 168.45 24.511 35.466 4.215 $4.24.489$ 208.240 168.30 24.511 35.466 4.2926 4.215 168.55 25.504						
167.20 $23,384$ $6,548$ $169,85$ $39,636$ $80,910$ 167.30 $23,384$ $8,184$ 169.95 $40,360$ $84,910$ 167.35 $23,384$ $9,354$ 170.00 $40,722$ $86,937$ 167.40 $23,384$ $10,523$ 170.05 $81,099$ $89,982$ 167.45 $23,384$ $10,523$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $12,861$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $14,030$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.65 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.70 $23,384$ $19,876$ 170.40 $363,736$ $167,828$ 167.80 $23,384$ $19,876$ 170.45 $404,112$ $187,025$ 167.85 $23,384$ $21,046$ 170.50 $444,489$ $208,240$ 167.90 $23,384$ $22,353$ $166,85$ $23,577$ $25,727$ 168.15 $23,692$ $28,104$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,364$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $23,364$ 170.50 $444,489$ $208,240$ 168.50 $25,504$ $37,997$ $168,65$ $25,697$ $39,277$ 168.65 $25,697$ $39,277$ $168,65$ $26,661$ $45,822$ 168.80 <						
167.25 $23,384$ $7,015$ 169.90 $39,998$ $82,901$ 167.30 $23,384$ $8,184$ 169.95 $40,360$ $84,910$ 167.35 $23,384$ $9,354$ 170.00 $40,722$ $86,937$ 167.40 $23,384$ $10,523$ 170.05 $81,099$ $89,982$ 167.45 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $15,200$ 170.25 $242,606$ $122,353$ 167.66 $23,384$ $15,200$ 170.25 $242,606$ $122,353$ 167.65 $23,384$ $17,538$ 170.30 $282,982$ $135,492$ 167.75 $23,384$ $18,707$ 170.40 $363,736$ $167,828$ 167.80 $23,384$ $22,215$ 167.85 $23,384$ $22,215$ 167.95 $23,384$ $22,215$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,316$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $23,384$ $16,800$ $23,777$ $25,727$ 168.10 $23,769$ $26,911$ 168.55 $25,504$ $37,997$ 168.25 $24,348$ $30,520$ $168,50$ $25,590$ $39,277$ 168.55 $25,504$ $37,997$ $168,65$ $25,697$ $39,277$ 168.65 $25,890$ $40,567$ $48,508$ $48,508$ 168.00 $26,661$						
167.30 $23,384$ $8,184$ 169.95 $40,360$ $84,910$ 167.35 $23,384$ $9,354$ 170.00 $40,722$ $86,937$ 167.40 $23,384$ $10,523$ 170.05 $81,099$ $89,982$ 167.45 $23,384$ $11,692$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $14,030$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $15,200$ 170.35 $223,359$ $150,651$ 167.75 $23,384$ $17,538$ 170.35 $323,359$ $150,651$ 167.75 $23,384$ $18,707$ $170,40$ $363,736$ $167,828$ 167.80 $23,384$ $21,046$ 170.45 $404,112$ $187,025$ 167.90 $23,384$ $22,215$ 167.92 $23,384$ $22,215$ 167.95 $23,384$ $22,384$ $23,384$ $208,240$ 167.95 $23,384$ $23,384$ $23,384$ 168.00 $23,3769$ $26,911$ 168.50 $24,733$ 168.20 $24,455$ $29,307$ $86,52$ $86,277$ 168.45 $25,504$ $37,997$ $86,56$ $84,494$ 168.80 $26,661$ $45,822$ $176,677$ 168.60 $25,697$ $39,277$ $168,60$ $26,661$ 168.90 $26,661$ $45,822$ $168,90$ $26,661$ 168.90 $26,661$ $45,822$ $168,90$ $17,60$ <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
167.35 $23,384$ $9,354$ 170.00 $40,722$ $86,937$ 167.45 $23,384$ $10,523$ 170.05 $81,099$ $89,982$ 167.45 $23,384$ $12,861$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $14,030$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $15,200$ 170.25 $242,606$ $122,353$ 167.65 $23,384$ $16,369$ 170.35 $323,359$ $150,651$ 167.70 $23,384$ $19,876$ 170.40 $363,736$ $167,828$ 167.80 $23,384$ $21,046$ 170.40 $363,736$ $167,828$ 167.80 $23,384$ $22,215$ 170.50 $444,489$ $208,240$ 167.90 $23,384$ $22,353$ $166,802$ $23,577$ $25,727$ 168.00 $23,384$ $24,553$ $168,05$ $23,577$ $25,727$ 168.15 $23,962$ $28,104$ 170.50 $444,489$ $208,240$ 168.25 $24,348$ $30,520$ $168,30$ $24,541$ $31,742$ 168.35 $25,504$ $37,997$ $168,65$ $25,590$ $37,997$ 168.60 $25,697$ $39,277$ $168,65$ $25,890$ $40,567$ 168.75 $26,275$ $43,175$ $18,90$ $26,854$ $47,160$ 168.90 $26,854$ $47,160$ $168,95$ $27,046$ $48,508$ $169,00$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
167.40 $23,384$ $10,523$ 170.05 $81,099$ $89,982$ 167.45 $23,384$ $11,692$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $12,861$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.70 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.75 $23,384$ $18,707$ 170.40 $363,736$ $167,828$ 167.80 $23,384$ $19,876$ 170.45 $404,112$ $187,025$ 167.80 $23,384$ $22,215$ 167.85 $23,384$ $22,215$ 167.85 $23,384$ $22,215$ 167.90 $23,384$ $22,215$ 170.45 $404,112$ $187,025$ 167.95 $23,384$ $22,334$ 170.50 $444,489$ $208,240$ 167.90 $23,384$ $22,927$ 168.10 $23,769$ $26,911$ 168.00 $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.55 $24,733$ $32,974$ $36,727$ 168.55 $25,504$ $37,997$ 168.65 $25,897$ $39,277$ 168.65 $25,890$ $40,567$ 168.75 $26,275$ $43,175$ $168,90$ $26,854$ $47,160$ 168.90 $26,854$ $47,160$ $168,90$ $27,239$ $49,865$ 169.00 $27,239$ $49,865$ $49,85$						
167.45 $23,384$ $11,692$ 170.10 $121,475$ $95,047$ 167.50 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $14,030$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $15,200$ 170.25 $242,606$ $122,353$ 167.65 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.70 $23,384$ $17,538$ 170.35 $323,359$ $150,651$ 167.75 $23,384$ $19,876$ 170.45 $404,112$ $187,025$ 167.80 $23,384$ $21,046$ 170.50 $444,489$ $208,240$ 167.90 $23,384$ $22,215$ 167.828 $208,240$ 167.95 $23,384$ $22,353$ $166,805$ $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.25 $24,348$ $30,520$ 168.25 $24,348$ $30,520$ $168,30$ $24,541$ $31,742$ 168.30 $24,541$ $31,742$ $168,55$ $25,504$ $37,997$ 168.60 $25,697$ $39,277$ $168,65$ $25,890$ $40,567$ 168.75 $26,275$ $43,175$ $186,65$ $45,822$ 168.80 $26,661$ $45,822$ $40,665$ 168.80 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ $169,00$ $27,239$ $49,865$ $169,05$ $33,346$ $51,517$ <td></td> <td></td> <td></td> <td></td> <td></td> <td>80,937</td>						80,937
167.50 $23,384$ $12,861$ 170.15 $161,852$ $102,130$ 167.55 $23,384$ $14,030$ 170.20 $202,229$ $111,232$ 167.60 $23,384$ $15,200$ 170.25 $242,606$ $122,353$ 167.65 $23,384$ $16,369$ 170.30 $282,982$ $135,492$ 167.70 $23,384$ $17,538$ 170.35 $323,359$ $150,651$ 167.75 $23,384$ $19,876$ 170.40 $363,736$ $167,828$ 167.85 $23,384$ $21,046$ 170.50 $444,489$ $208,240$ 167.90 $23,384$ $22,215$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,354$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,354$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,354$ 170.50 $444,489$ $208,240$ 167.95 $23,384$ $22,357$ $25,777$ $25,727$ 168.05 $23,577$ $25,727$ $168,25$ $24,348$ $30,520$ 168.30 $24,541$ $31,742$ $168,35$ $25,504$ $37,997$ 168.65 $25,890$ $40,567$ $39,277$ 168.65 $25,697$ $39,277$ $168,60$ $26,681$ $44,894$ 168.85 $26,661$ $45,822$ $188,90$ $26,854$ $47,160$ 168.95 $27,046$ $44,508$ $44,944$ $488,508$ $49,508$ $169,00$ $27,239$ $49,865$ $49,865$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
167.90 $23,384$ $22,215$ 167.95 $23,384$ $23,384$ 168.00 $23,384$ $24,553$ 168.05 $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.05 $33,846$ $51,517$						
167.95 $23,384$ $23,384$ 168.00 $23,384$ $24,553$ 168.05 $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.65 $25,697$ $39,277$ 168.65 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.05 $33,846$ $51,517$				170.50	444,489	208,240
168.00 $23,384$ $24,553$ 168.05 $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.65 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.05 $33,846$ $51,517$						
168.05 $23,577$ $25,727$ 168.10 $23,769$ $26,911$ 168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$						
168.10 $23,769$ $26,911$ 168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.00	23,384	24,553			
168.15 $23,962$ $28,104$ 168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.65 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.05	23,577	25,727			
168.20 $24,155$ $29,307$ 168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.65 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.10	23,769	26,911			
168.25 $24,348$ $30,520$ 168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.15	23,962	28,104			
168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.20	24,155	29,307			
168.30 $24,541$ $31,742$ 168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.25	24,348	30,520			
168.35 $24,733$ $32,974$ 168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.30	24,541				
168.40 $24,926$ $34,215$ 168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$	168.35	24,733				
168.45 $25,119$ $35,466$ 168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$		24,926				
168.50 $25,312$ $36,727$ 168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$						
168.55 $25,504$ $37,997$ 168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$						
168.60 $25,697$ $39,277$ 168.65 $25,890$ $40,567$ 168.70 $26,082$ $41,866$ 168.75 $26,275$ $43,175$ 168.80 $26,468$ $44,494$ 168.85 $26,661$ $45,822$ 168.90 $26,854$ $47,160$ 168.95 $27,046$ $48,508$ 169.00 $27,239$ $49,865$ 169.05 $33,846$ $51,517$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
168.7026,08241,866168.7526,27543,175168.8026,46844,494168.8526,66145,822168.9026,85447,160168.9527,04648,508169.0027,23949,865169.0533,84651,517			,			
168.7526,27543,175168.8026,46844,494168.8526,66145,822168.9026,85447,160168.9527,04648,508169.0027,23949,865169.0533,84651,517						
168.80 26,468 44,494 168.85 26,661 45,822 168.90 26,854 47,160 168.95 27,046 48,508 169.00 27,239 49,865 169.05 33,846 51,517						
168.8526,66145,822168.9026,85447,160168.9527,04648,508169.0027,23949,865169.0533,84651,517						
168.9026,85447,160168.9527,04648,508169.0027,23949,865169.0533,84651,517						
168.95 27,046 48,508 169.00 27,239 49,865 169.05 33,846 51,517						
169.00 27,239 49,865 169.05 33,846 51,517			,			
169.05 33,846 51,517						
		,				

Stage-Area-Storage for Pond BIO#1: BIO-RET AREA #1

PART 4

20025-00 - PRE DEV_2023-09-01 Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.380	96	Gravel surface, HSG C (ES-01, ES-04, ES-05)
12.658	55	Woods, Good, HSG B (ES-01, ES-02, ES-03, ES-04, ES-05, ES-06)
22.319	70	Woods, Good, HSG C (ES-01, ES-04, ES-05)
0.638	77	Woods, Good, HSG D (ES-04)
0.622	58	Woods/grass comb., Good, HSG B (ES-02, ES-03, ES-06)
36.617	65	TOTAL AREA

20025-00 - PRE DEV_2023-09-01 Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
13.280	HSG B	ES-01, ES-02, ES-03, ES-04, ES-05, ES-06
22.700	HSG C	ES-01, ES-04, ES-05
0.638	HSG D	ES-04
0.000	Other	
36.617		TOTAL AREA

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Runoff Area=167,420 sf 0.00% Impervious Runoff Depth>0.38" Flow Length=594' Tc=31.0 min CN=60 Runoff=0.6 cfs 0.1 af
Runoff Area=61,827 sf 0.00% Impervious Runoff Depth>0.23" Flow Length=147' Tc=15.6 min CN=55 Runoff=0.1 cfs 0.0 af
Runoff Area=46,937 sf 0.00% Impervious Runoff Depth>0.26" Flow Length=259' Tc=27.2 min CN=56 Runoff=0.1 cfs 0.0 af
Runoff Area=704,555 sf 0.00% Impervious Runoff Depth>0.65" Flow Length=805' Tc=27.7 min CN=67 Runoff=6.0 cfs 0.9 af
Runoff Area=590,340 sf 0.00% Impervious Runoff Depth>0.60" Flow Length=1,553' Tc=67.4 min CN=66 Runoff=2.9 cfs 0.7 af
Runoff Area=23,977 sf 0.00% Impervious Runoff Depth>0.26" Flow Length=179' Tc=22.3 min CN=56 Runoff=0.1 cfs 0.0 af
Inflow=0.6 cfs 0.1 af Primary=0.6 cfs 0.1 af
Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Primary=0.0 cfs 0.0 af
Primary=0.0 cfs 0.0 af
Inflow=2.9 cfs 0.7 af Primary=2.9 cfs 0.7 af
Inflow=6.0 cfs 0.9 af Primary=6.0 cfs 0.9 af

Total Runoff Area = 36.617 ac Runoff Volume = 1.7 af Average Runoff Depth = 0.57" 100.00% Pervious = 36.617 ac 0.00% Impervious = 0.000 ac

Type III 24-hr 10-yr Rainfall=4.79"

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 5

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentES-01:	Runoff Area=167,420 sf 0.00% Impervious Runoff Depth>1.17" Flow Length=594' Tc=31.0 min CN=60 Runoff=2.6 cfs 0.4 af
SubcatchmentES-02:	Runoff Area=61,827 sf 0.00% Impervious Runoff Depth>0.87" Flow Length=147' Tc=15.6 min CN=55 Runoff=0.8 cfs 0.1 af
SubcatchmentES-03: ES-03	Runoff Area=46,937 sf 0.00% Impervious Runoff Depth>0.93" Flow Length=259' Tc=27.2 min CN=56 Runoff=0.6 cfs 0.1 af
SubcatchmentES-04:	Runoff Area=704,555 sf 0.00% Impervious Runoff Depth>1.65" Flow Length=805' Tc=27.7 min CN=67 Runoff=17.6 cfs 2.2 af
SubcatchmentES-05:	Runoff Area=590,340 sf 0.00% Impervious Runoff Depth>1.56" Flow Length=1,553' Tc=67.4 min CN=66 Runoff=8.7 cfs 1.8 af
SubcatchmentES-06:	Runoff Area=23,977 sf 0.00% Impervious Runoff Depth>0.93" Flow Length=179' Tc=22.3 min CN=56 Runoff=0.3 cfs 0.0 af
Link POI-A: TOWLE ROAD	Inflow=2.6 cfs 0.4 af Primary=2.6 cfs 0.4 af
Link POI-B: LOT R-12-25	Inflow=0.8 cfs 0.1 af Primary=0.8 cfs 0.1 af
Link POI-C: LOT R-12-24	Inflow=0.6 cfs 0.1 af Primary=0.6 cfs 0.1 af
Link POI-D: LOTS R-11-4-A, & 4-B	Inflow=0.3 cfs 0.0 af Primary=0.3 cfs 0.0 af
Link POI-E: LOT R-11-14	Primary=0.0 cfs 0.0 af
Link POI-F: LOT R-11-13	Primary=0.0 cfs 0.0 af
Link POI-G: LOT R-11-9	Inflow=8.7 cfs 1.8 af Primary=8.7 cfs 1.8 af
Link POI-H: LOT R-12-27	Inflow=17.6 cfs 2.2 af Primary=17.6 cfs 2.2 af

Total Runoff Area = 36.617 acRunoff Volume = 4.6 afAverage Runoff Depth = 1.50"100.00% Pervious = 36.617 ac0.00% Impervious = 0.000 ac

Type III 24-hr 50-yr Rainfall=7.32"

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentES-01:	Runoff Area=167,420 sf 0.00% Impervious Runoff Depth>2.81" Flow Length=594' Tc=31.0 min CN=60 Runoff=6.9 cfs 0.9 af
Subcatchment ES-02:	Runoff Area=61,827 sf 0.00% Impervious Runoff Depth>2.32" Flow Length=147' Tc=15.6 min CN=55 Runoff=2.7 cfs 0.3 af
Subcatchment ES-03: ES-03	Runoff Area=46,937 sf 0.00% Impervious Runoff Depth>2.41" Flow Length=259' Tc=27.2 min CN=56 Runoff=1.7 cfs 0.2 af
Subcatchment ES-04:	Runoff Area=704,555 sf 0.00% Impervious Runoff Depth>3.54" Flow Length=805' Tc=27.7 min CN=67 Runoff=39.3 cfs 4.8 af
Subcatchment ES-05:	Runoff Area=590,340 sf 0.00% Impervious Runoff Depth>3.40" Flow Length=1,553' Tc=67.4 min CN=66 Runoff=20.0 cfs 3.8 af
Subcatchment ES-06:	Runoff Area=23,977 sf 0.00% Impervious Runoff Depth>2.42" Flow Length=179' Tc=22.3 min CN=56 Runoff=1.0 cfs 0.1 af
Link POI-A: TOWLE ROAD	Inflow=6.9 cfs 0.9 af Primary=6.9 cfs 0.9 af
Link POI-B: LOT R-12-25	Inflow=2.7 cfs 0.3 af Primary=2.7 cfs 0.3 af
Link POI-C: LOT R-12-24	Inflow=1.7 cfs 0.2 af Primary=1.7 cfs 0.2 af
Link POI-D: LOTS R-11-4-A, & 4-B	Inflow=1.0 cfs 0.1 af Primary=1.0 cfs 0.1 af
Link POI-E: LOT R-11-14	Primary=0.0 cfs 0.0 af
Link POI-F: LOT R-11-13	Primary=0.0 cfs 0.0 af
Link POI-G: LOT R-11-9	Inflow=20.0 cfs 3.8 af Primary=20.0 cfs 3.8 af
Link POI-H: LOT R-12-27	Inflow=39.3 cfs 4.8 af Primary=39.3 cfs 4.8 af

Total Runoff Area = 36.617 ac Runoff Volume = 10.1 af Average Runoff Depth = 3.32" 100.00% Pervious = 36.617 ac 0.00% Impervious = 0.000 ac

Type III 24-hr 10-yr Rainfall=4.79"

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 1

Summary for Subcatchment ES-01:

Runoff = 2.6 cfs @ 12.50 hrs, Volume= 0.4 af, Depth> 1.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

_	A	rea (sf)	CN	Description		
_	1	08,870	55	Woods, Go	od, HSG B	
		58,008	70	Woods, Go	od, HSG C	
_		542	96	Gravel surfa	ace, HSG C	
	1	67,420	60	Weighted A	verage	
	1	67,420		100.00% P	ervious Are	а
	_					
	Tc	Length	Slope	•	Capacity	Description
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	21.7	100	0.0200	0.08		Sheet Flow, 1A
						Woods: Light underbrush n= 0.400 P2= 3.14"
	5.2	219	0.0200	0.71		Shallow Concentrated Flow, 1B
						Woodland Kv= 5.0 fps
	3.2	195	0.0400) 1.00		Shallow Concentrated Flow, 1C
						Woodland Kv= 5.0 fps
	0.8	80	0.1000) 1.58		Shallow Concentrated Flow, 1D
_						Woodland Kv= 5.0 fps
	31 0	50/	Total			

31.0 594 Total

Summary for Subcatchment ES-02:

Runoff = 0.8 cfs @ 12.27 hrs, Volume= 0.1 af, Depth> 0.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	Ar	rea (sf)	CN	Description				
		7,561		•		Good, HSG B		
		54,266	55	Woods, Go	od, HSG B			
		61,827	55	Weighted A	verage			
	(61,827		100.00% Pe	ervious Are	а		
٦	Гс	Length	Slope	Velocity	Capacity	Description		
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
15	.0	100	0.0500	0.11		Sheet Flow, 2A		
						Woods: Light underbrush n= 0.400 P2= 3.14"		
0	.6	47	0.0800	1.41		Shallow Concentrated Flow, 2B		
						Woodland Kv= 5.0 fps		
15	.6	147	Total					

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 2

Summary for Subcatchment ES-03: ES-03

Runoff = 0.6 cfs @ 12.46 hrs, Volume= 0.1 af, Depth> 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

A	rea (sf)	CN E	CN Description						
	11,967 34,970		0						
	46,937 46,937	56 V	Veighted A	· · ·					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
12.4	35	0.0100	0.05		Sheet Flow, 3A				
12.4	61	0.0300	0.08		Woods: Light underbrush n= 0.400 P2= 3.14" Sheet Flow, 3B Woods: Light underbrush n= 0.400 P2= 3.14"				
2.4	163	0.0500	1.12		Shallow Concentrated Flow, 3C Woodland Kv= 5.0 fps				
27.2	259	Total			·				

Summary for Subcatchment ES-04:

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

Area (sf)	CN	Description
159,244	55	Woods, Good, HSG B
15,562	96	Gravel surface, HSG C
501,978	70	Woods, Good, HSG C
27,771	77	Woods, Good, HSG D
704,555	67	Weighted Average
704,555		100.00% Pervious Area

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
11.3	99	0.1000	0.15		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.14"
0.6	38	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.4	35	0.1100	1.66		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.2	78	0.0500	1.12		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.9	66	0.0600	1.22		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
0.7	45	0.0400	1.00		Shallow Concentrated Flow,
-	-				Woodland Kv= 5.0 fps
2.1	63	0.0100	0.50		Shallow Concentrated Flow, Flow though Wetlands
					Woodland Kv= 5.0 fps
3.1	94	0.0100	0.50		Shallow Concentrated Flow,
••••					Woodland Kv= 5.0 fps
0.2	28	0.2800	2.65		Shallow Concentrated Flow,
0.2		0.2000	2.00		Woodland Kv= 5.0 fps
0.1	8	0.0100	1.61		Shallow Concentrated Flow,
0.1	Ŭ	0.0100	1.01		Unpaved Kv= 16.1 fps
0.8	44	0.0300	0.87		Shallow Concentrated Flow,
0.0		0.0000	0.07		Woodland Kv= 5.0 fps

0.6	38	0.0500	1.12	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
5.6	169	0.0100	0.50	Shallow Concentrated Flow, Woodland Kv= 5.0 fps
27.7	805	Total		

Summary for Subcatchment ES-05:

Runoff	=	87 cfs @	12.97 hrs, `	Volume=	1.8 af, Depth>	1 56"
Runon	-	0.1 US(w)	12.37 1115,	volume-		1.50

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

Area (sf)	CN	Description			
177,624	55	Woods, Good, HSG B			
465	96	Gravel surface, HSG C			
412,251	70	Woods, Good, HSG C			
590,340 590,340	66	Weighted Average 100.00% Pervious Area			

Type III 24-hr 10-yr Rainfall=4.79"

Page 3

Prepared by TFMoran, Inc.

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	25.4	86	0.0100	0.06		Sheet Flow, 5A
						Woods: Light underbrush n= 0.400 P2= 3.14"
	2.2	198	0.0900	1.50		Shallow Concentrated Flow, 5B
						Woodland Kv= 5.0 fps
	0.6	41	0.0500	1.12		Shallow Concentrated Flow, 5C
						Woodland Kv= 5.0 fps
	2.3	98	0.0200	0.71		Shallow Concentrated Flow, 5D
						Woodland Kv= 5.0 fps
	4.6	137	0.0100	0.50		Shallow Concentrated Flow, 5E
						Woodland Kv= 5.0 fps
	1.9	81	0.0200	0.71		Shallow Concentrated Flow, 5F
						Woodland Kv= 5.0 fps
	26.8	804	0.0100	0.50		Shallow Concentrated Flow, 5G
						Woodland Kv= 5.0 fps
	3.6	108	0.0100	0.50		Shallow Concentrated Flow, 5H
						Woodland Kv= 5.0 fps
-	67.4	4 550	Tatal			· · · · · ·

67.4 1,553 Total

Summary for Subcatchment ES-06:

Runoff = 0.3 cfs @ 12.38 hrs, Volume= 0.0 af, Depth> 0.93"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

_	A	rea (sf)	CN [Description		
		7,579				Good, HSG B
_		16,398	55 \	vooas, Go	od, HSG B	
		23,977	56 \	Veighted A	verage	
		23,977		100.00% Pe	ervious Are	a
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.5	50	0.0200	0.07		Sheet Flow, 6A
						Woods: Light underbrush n= 0.400 P2= 3.14"
	8.7	45	0.0400	0.09		Sheet Flow, 6B
	•			0.00		Woods: Light underbrush n= 0.400 P2= 3.14"
	1.1	84	0.0600	1.22		Shallow Concentrated Flow, 6C
	1.1	04	0.0000	1.22		Woodland $Kv=5.0$ fps
-		470	T . 4 . 1			

22.3 179 Total

Summary for Link POI-A: TOWLE ROAD

Inflow Area =	3.843 ac,	0.00% Impervious,	Inflow Depth >	1.17" for 10-yr event
Inflow =	2.6 cfs @	12.50 hrs, Volume=	0.4 af	
Primary =	2.6 cfs @	12.50 hrs, Volume=	0.4 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Type III 24-hr 10-yr Rainfall=4.79"

Page 4

Page 5

Summary for Link POI-B: LOT R-12-25

Inflow Area =		1.419 ac,	0.00% Impervious,	Inflow Depth >	0.87" for	10-yr event
Inflow	=	0.8 cfs @	12.27 hrs, Volume=	0.1 af		
Primary	=	0.8 cfs @	12.27 hrs, Volume=	0.1 af,	Atten= 0%	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-C: LOT R-12-24

Inflow Area =	1.078 ac,	0.00% Impervious,	Inflow Depth >	0.93" for	10-yr event
Inflow =	0.6 cfs @	12.46 hrs, Volume=	0.1 af		-
Primary =	0.6 cfs @	12.46 hrs, Volume=	0.1 af,	Atten= 0%	, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-D: LOTS R-11-4-A, & 4-B

Inflow Area =	0.550 ac,	0.00% Impervious,	Inflow Depth >	0.93" for 10)-yr event
Inflow =	0.3 cfs @	12.38 hrs, Volume=	0.0 af		
Primary =	0.3 cfs @	12.38 hrs, Volume=	0.0 af,	Atten= 0%, La	ag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-E: LOT R-11-14

[43] Hint: Has no inflow (Outflow=Zero)

Primary = 0.0 cfs @ 0.00 hrs, Volume= 0.0 af

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-F: LOT R-11-13

[43] Hint: Has no inflow (Outflow=Zero)

Primary = 0.0 cfs @ 0.00 hrs, Volume= 0.0 af

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

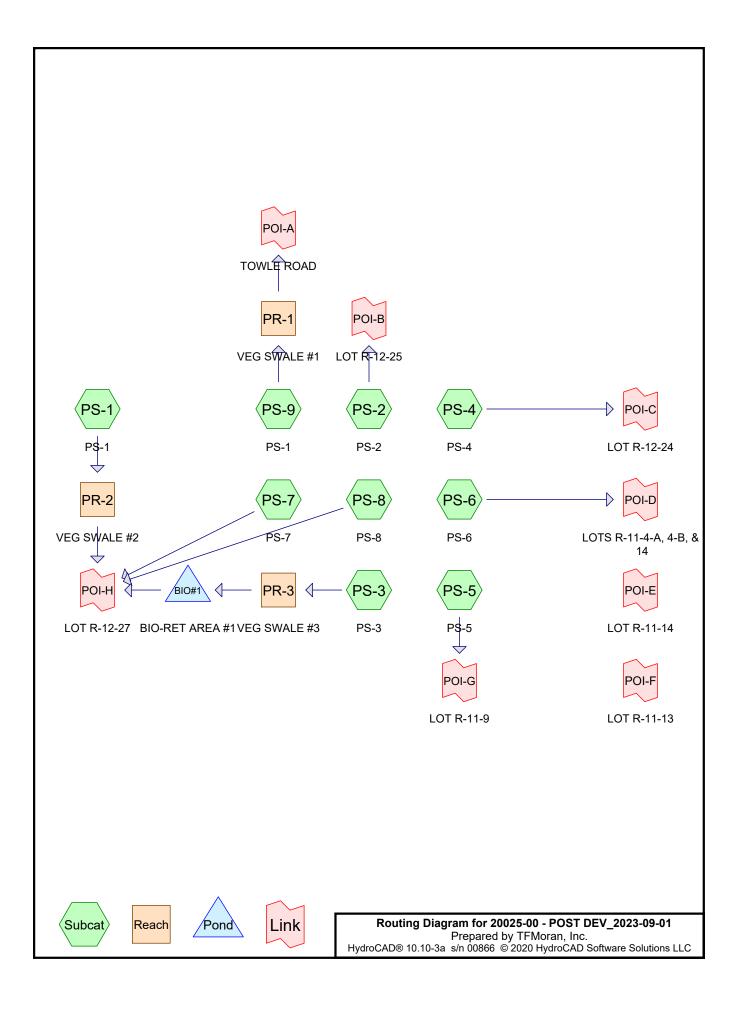
Summary for Link POI-G: LOT R-11-9

 Inflow Area =
 13.552 ac,
 0.00% Impervious,
 Inflow Depth >
 1.56"
 for
 10-yr event

 Inflow =
 8.7 cfs @
 12.97 hrs,
 Volume=
 1.8 af

 Primary =
 8.7 cfs @
 12.97 hrs,
 Volume=
 1.8 af,

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs


Summary for Link POI-H: LOT R-12-27

Inflow Area = 16.174 ac, 0.00% Impervious, Inflow Depth > 1.65" for 10-yr event 17.6 cfs @ 12.42 hrs, Volume= Inflow 2.2 af = Primary = 17.6 cfs @ 12.42 hrs, Volume= 2.2 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Page 6

20025-00 - POST DEV_2023-09-01 Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 2

Area Listing (all nodes)

CN	Description
	(subcatchment-numbers)
100	8% Slope, Good, HSG B (PS-3, PS-5, PS-9)
100	8% Slope, Good, HSG C (PS-3)
66	Adjusted CN w/ 30% Imp, Good, HSG B (PS-1, PS-3, PS-5, PS-8, PS-9)
78	Adjusted CN w/ 30% Imp, Good, HSG C (PS-1, PS-3)
96	Gravel surface, HSG B (PS-3)
96	Gravel surface, HSG C (PS-1, PS-3, PS-8)
61	Pasture/grassland/range, Good, HSG B (PS-1, PS-2, PS-3, PS-4, PS-5, PS-6, PS-7,
	PS-8, PS-9)
74	Pasture/grassland/range, Good, HSG C (PS-1, PS-3, PS-5, PS-7, PS-8)
80	Pasture/grassland/range, Good, HSG D (PS-7)
98	Paved parking, HSG B (PS-8)
98	Unconnected pavement, HSG C (PS-3)
55	Woods, Good, HSG B (PS-4)
70	TOTAL AREA
	100 100 66 78 96 96 61 74 80 98 98 98 55

20025-00 - POST DEV_2023-09-01 Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
13.280	HSG B	PS-1, PS-2, PS-3, PS-4, PS-5, PS-6, PS-7, PS-8, PS-9
22.700	HSG C	PS-1, PS-3, PS-5, PS-7, PS-8
0.638	HSG D	PS-7
0.000	Other	
36.617		TOTAL AREA

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPS-1: PS-1	Runoff Area=91,352 sf 0.00% Impervious Runoff Depth>0.57" Flow Length=137' Slope=0.0500 '/' Tc=7.3 min CN=65 Runoff=1.0 cfs 0.1 af
SubcatchmentPS-2: PS-2	Runoff Area=12,613 sf 0.00% Impervious Runoff Depth>0.42" Flow Length=75' Slope=0.0100 '/' Tc=10.4 min CN=61 Runoff=0.1 cfs 0.0 af
SubcatchmentPS-3: PS-3	Runoff Area=862,328 sf 2.18% Impervious Runoff Depth>0.84" Flow Length=962' Tc=24.6 min CN=71 Runoff=10.9 cfs 1.4 af
SubcatchmentPS-4: PS-4	Runoff Area=19,014 sf 0.00% Impervious Runoff Depth>0.35" Flow Length=152' Tc=9.8 min CN=59 Runoff=0.1 cfs 0.0 af
SubcatchmentPS-5: PS-5	Runoff Area=190,890 sf 0.95% Impervious Runoff Depth>0.83" Flow Length=1,033' Tc=30.6 min CN=71 Runoff=2.2 cfs 0.3 af
SubcatchmentPS-6: PS-6	Runoff Area=10,885 sf 0.00% Impervious Runoff Depth>0.42" Flow Length=152' Tc=11.5 min CN=61 Runoff=0.1 cfs 0.0 af
Subcatchment PS-7: PS-7	Runoff Area=246,354 sf 0.00% Impervious Runoff Depth>0.94" low Length=695' Slope=0.0100 '/' Tc=28.4 min CN=73 Runoff=3.4 cfs 0.4 af
SubcatchmentPS-8: PS-8	Runoff Area=111,328 sf 1.16% Impervious Runoff Depth>0.70" Flow Length=621' Tc=18.4 min CN=68 Runoff=1.2 cfs 0.1 af
Subcatchment PS-9: PS-1	Runoff Area=50,291 sf 0.20% Impervious Runoff Depth>0.42" Flow Length=228' Tc=8.1 min CN=61 Runoff=0.3 cfs 0.0 af
Reach PR-1: VEG SWALE #1	Avg. Flow Depth=0.22' Max Vel=2.04 fps Inflow=0.3 cfs 0.0 af n=0.030 L=454.0' S=0.0352 '/' Capacity=17.0 cfs Outflow=0.3 cfs 0.0 af
Reach PR-2: VEG SWALE #2	Avg. Flow Depth=0.25' Max Vel=2.02 fps Inflow=1.0 cfs 0.1 af n=0.030 L=461.0' S=0.0174 '/' Capacity=17.4 cfs Outflow=0.9 cfs 0.1 af
Reach PR-3: VEG SWALE #3	Avg. Flow Depth=0.75' Max Vel=2.66 fps Inflow=10.9 cfs 1.4 af n=0.030 L=710.0' S=0.0070 '/' Capacity=82.1 cfs Outflow=10.6 cfs 1.4 af
Pond BIO#1: BIO-RET AREA #	Peak Elev=168.24' Storage=30,220 cf Inflow=10.6 cfs 1.4 af Discarded=1.0 cfs 0.9 af Primary=0.0 cfs 0.0 af Outflow=1.0 cfs 0.9 af
Link POI-A: TOWLE ROAD	Inflow=0.3 cfs 0.0 af Primary=0.3 cfs 0.0 af
Link POI-B: LOT R-12-25	Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Link POI-C: LOT R-12-24	Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a_s/n 00866_© 2020 HydroCAD Software Solutions LLC	Page 5
Link POI-D: LOTS R-11-4-A, 4-B, & 14	Inflow=0.1 cfs 0.0 af Primary=0.1 cfs 0.0 af
Link POI-E: LOT R-11-14	Primary=0.0 cfs 0.0 af
Link POI-F: LOT R-11-13	Primary=0.0 cfs 0.0 af
Link POI-G: LOT R-11-9	Inflow=2.2 cfs 0.3 af Primary=2.2 cfs 0.3 af
Link POI-H: LOT R-12-27	Inflow=5.1 cfs 0.7 af Primary=5.1 cfs 0.7 af
Total Runoff Area = 36 617 ac Runoff Volume = 2.4 af	Average Runoff Denth = 0.80

Total Runoff Area = 36.617 acRunoff Volume = 2.4 afAverage Runoff Depth = 0.80"98.62% Pervious = 36.112 ac1.38% Impervious = 0.506 ac

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 6

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPS-1: PS-1	Runoff Area=91,352 sf 0.00% Impervious Runoff Depth>1.51" Flow Length=137' Slope=0.0500 '/' Tc=7.3 min CN=65 Runoff=3.3 cfs 0.3 af
Subcatchment PS-2: PS-2	Runoff Area=12,613 sf 0.00% Impervious Runoff Depth>1.24" Flow Length=75' Slope=0.0100 '/' Tc=10.4 min CN=61 Runoff=0.3 cfs 0.0 af
SubcatchmentPS-3: PS-3	Runoff Area=862,328 sf 2.18% Impervious Runoff Depth>1.95" Flow Length=962' Tc=24.6 min CN=71 Runoff=27.4 cfs 3.2 af
SubcatchmentPS-4: PS-4	Runoff Area=19,014 sf 0.00% Impervious Runoff Depth>1.11" Flow Length=152' Tc=9.8 min CN=59 Runoff=0.4 cfs 0.0 af
SubcatchmentPS-5: PS-5	Runoff Area=190,890 sf 0.95% Impervious Runoff Depth>1.95" Flow Length=1,033' Tc=30.6 min CN=71 Runoff=5.5 cfs 0.7 af
SubcatchmentPS-6: PS-6	Runoff Area=10,885 sf 0.00% Impervious Runoff Depth>1.24" Flow Length=152' Tc=11.5 min CN=61 Runoff=0.3 cfs 0.0 af
SubcatchmentPS-7: PS-7	Runoff Area=246,354 sf 0.00% Impervious Runoff Depth>2.10" Flow Length=695' Slope=0.0100 '/' Tc=28.4 min CN=73 Runoff=8.0 cfs 1.0 af
SubcatchmentPS-8: PS-8	Runoff Area=111,328 sf 1.16% Impervious Runoff Depth>1.72" Flow Length=621' Tc=18.4 min CN=68 Runoff=3.5 cfs 0.4 af
SubcatchmentPS-9: PS-1	Runoff Area=50,291 sf 0.20% Impervious Runoff Depth>1.24" Flow Length=228' Tc=8.1 min CN=61 Runoff=1.4 cfs 0.1 af
Reach PR-1: VEG SWALE #1	Avg. Flow Depth=0.38' Max Vel=2.97 fps Inflow=1.4 cfs 0.1 af n=0.030 L=454.0' S=0.0352 '/' Capacity=17.0 cfs Outflow=1.3 cfs 0.1 af
Reach PR-2: VEG SWALE #2	Avg. Flow Depth=0.46' Max Vel=2.80 fps Inflow=3.3 cfs 0.3 af n=0.030 L=461.0' S=0.0174 '/' Capacity=17.4 cfs Outflow=3.1 cfs 0.3 af
Reach PR-3: VEG SWALE #3	Avg. Flow Depth=1.20' Max Vel=3.42 fps Inflow=27.4 cfs 3.2 af n=0.030 L=710.0' S=0.0070 '/' Capacity=82.1 cfs Outflow=27.0 cfs 3.2 af
Pond BIO#1: BIO-RET AREA	#1 Peak Elev=169.38' Storage=62,921 cf Inflow=27.0 cfs 3.2 af Discarded=1.4 cfs 1.3 af Primary=3.7 cfs 0.8 af Outflow=5.2 cfs 2.1 af
Link POI-A: TOWLE ROAD	Inflow=1.3 cfs 0.1 af Primary=1.3 cfs 0.1 af
Link POI-B: LOT R-12-25	Inflow=0.3 cfs 0.0 af Primary=0.3 cfs 0.0 af
Link POI-C: LOT R-12-24	Inflow=0.4 cfs 0.0 af Primary=0.4 cfs 0.0 af

20025-00 - POST DEV_2023-09-01 Prepared by TFMoran, Inc.	Type III 24-hr 10-yr Rainfall=4.79"
HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions	LLC Page 7
Link POI-D: LOTS R-11-4-A, 4-B, & 14	Inflow=0.3 cfs 0.0 af
	Primary=0.3 cfs 0.0 af
Link POI-E: LOT R-11-14	Primary=0.0 cfs 0.0 af
Link POI-F: LOT R-11-13	Primary=0.0 cfs 0.0 af
Link POI-G: LOT R-11-9	Inflow=5.5 cfs 0.7 af Primary=5.5 cfs 0.7 af
Link POI-H: LOT R-12-27	Inflow=12.8 cfs 2.5 af Primary=12.8 cfs 2.5 af
Total Runoff Area = 36.617 ac Runoff Volume =	= 5.8 af Average Runoff Depth = 1.89"

98.62% Pervious = 36.112 ac 1.38% Impervious = 0.506 ac

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 50-yr Rainfall=7.32"

Page 8

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPS-1: PS-1 F	Runoff Area=91,352 sf 0.00% Impervious Runoff Depth>3.35" Now Length=137' Slope=0.0500 '/' Tc=7.3 min CN=65 Runoff=7.7 cfs 0.6 af
SubcatchmentPS-2: PS-2 F	Runoff Area=12,613 sf 0.00% Impervious Runoff Depth>2.93" Flow Length=75' Slope=0.0100 '/' Tc=10.4 min CN=61 Runoff=0.8 cfs 0.1 af
SubcatchmentPS-3: PS-3	Runoff Area=862,328 sf 2.18% Impervious Runoff Depth>3.97" Flow Length=962' Tc=24.6 min CN=71 Runoff=57.1 cfs 6.6 af
SubcatchmentPS-4: PS-4	Runoff Area=19,014 sf 0.00% Impervious Runoff Depth>2.72" Flow Length=152' Tc=9.8 min CN=59 Runoff=1.2 cfs 0.1 af
SubcatchmentPS-5: PS-5	Runoff Area=190,890 sf 0.95% Impervious Runoff Depth>3.97" Flow Length=1,033' Tc=30.6 min CN=71 Runoff=11.5 cfs 1.4 af
SubcatchmentPS-6: PS-6	Runoff Area=10,885 sf 0.00% Impervious Runoff Depth>2.93" Flow Length=152' Tc=11.5 min CN=61 Runoff=0.7 cfs 0.1 af
Subcatchment PS-7: PS-7 Flow	Runoff Area=246,354 sf 0.00% Impervious Runoff Depth>4.19" w Length=695' Slope=0.0100 '/' Tc=28.4 min CN=73 Runoff=16.2 cfs 2.0 af
SubcatchmentPS-8: PS-8	Runoff Area=111,328 sf 1.16% Impervious Runoff Depth>3.66" Flow Length=621' Tc=18.4 min CN=68 Runoff=7.6 cfs 0.8 af
SubcatchmentPS-9: PS-1	Runoff Area=50,291 sf 0.20% Impervious Runoff Depth>2.93" Flow Length=228' Tc=8.1 min CN=61 Runoff=3.6 cfs 0.3 af
Reach PR-1: VEG SWALE #1	Avg. Flow Depth=0.55' Max Vel=3.80 fps Inflow=3.6 cfs 0.3 af n=0.030 L=454.0' S=0.0352 '/' Capacity=17.0 cfs Outflow=3.5 cfs 0.3 af
Reach PR-2: VEG SWALE #2	Avg. Flow Depth=0.69' Max Vel=3.50 fps Inflow=7.7 cfs 0.6 af n=0.030 L=461.0' S=0.0174 '/' Capacity=17.4 cfs Outflow=7.3 cfs 0.6 af
Reach PR-3: VEG SWALE #3	Avg. Flow Depth=1.69' Max Vel=4.14 fps Inflow=57.1 cfs 6.6 af n=0.030 L=710.0' S=0.0070 '/' Capacity=82.1 cfs Outflow=56.4 cfs 6.5 af
Pond BIO#1: BIO-RET AREA #1	Peak Elev=170.15' Storage=101,934 cf Inflow=56.4 cfs 6.5 af Discarded=6.3 cfs 1.8 af Primary=19.5 cfs 3.6 af Outflow=25.8 cfs 5.4 af
Link POI-A: TOWLE ROAD	Inflow=3.5 cfs 0.3 af Primary=3.5 cfs 0.3 af
Link POI-B: LOT R-12-25	Inflow=0.8 cfs 0.1 af Primary=0.8 cfs 0.1 af
Link POI-C: LOT R-12-24	Inflow=1.2 cfs 0.1 af Primary=1.2 cfs 0.1 af

20025-00 - POST DEV_2023-09-01 Prepared by TFMoran, Inc.	Type III 24-hr 50-yr Rainfall=7.32"
HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LL	.C Page 9
Link POI-D: LOTS R-11-4-A, 4-B, & 14	Inflow=0.7 cfs 0.1 af Primary=0.7 cfs 0.1 af
Link POI-E: LOT R-11-14	Primary=0.0 cfs 0.0 af
Link POI-F: LOT R-11-13	Primary=0.0 cfs 0.0 af
Link POI-G: LOT R-11-9	Inflow=11.5 cfs 1.4 af Primary=11.5 cfs 1.4 af
Link POI-H: LOT R-12-27	Inflow=38.0 cfs 6.9 af Primary=38.0 cfs 6.9 af
Total Runoff Area = 36.617 ac Runoff Volume = 1	1.9 af Average Runoff Depth = 3.89

17 ac Runoff Volume = 11.9 af Average Runoff Depth = 3.89" 98.62% Pervious = 36.112 ac 1.38% Impervious = 0.506 ac

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 1

Summary for Subcatchment PS-1: PS-1

Runoff = 3.3 cfs @ 12.12 hrs, Volume= 0.3 af, Depth> 1.51"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	A	rea (sf)	CN I	Description		
		44,714	61 I	Pasture/gra	ssland/rang	ge, Good, HSG B
		16,320	61 I	Pasture/gra	ssland/rang	ge, Good, HSG B
*		8,293	66 /	Adjusted Cl	N w/ 30% lr	mp, Good, HSG B
		18,016	74 I	Pasture/gra	ssland/rang	ge, Good, HSG C
		997	74 I	Pasture/gra	ssland/rang	ge, Good, HSG C
*		1,677	78 /	Adjusted Cl	N w/ 30% Ir	mp, Good, HSG C
		1,335	96 (Gravel surfa	ace, HSG C	
		91,352	65	Neighted A	verage	
		91,352		100.00% Pe	ervious Are	а
	Tc	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	6.9	100	0.0500	0.24		Sheet Flow, 1A
						Grass: Short n= 0.150 P2= 3.14"
	0.4	37	0.0500	1.57		Shallow Concentrated Flow, 1B
						Short Grass Pasture Kv= 7.0 fps
	7.3	137	Total			

7.3 137 Iotal

Summary for Subcatchment PS-2: PS-2

Runoff = 0.3 cfs @ 12.16 hrs, Volume= 0.0 af, Depth> 1.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

A	rea (sf)	CN E	escription								
	12,613	61 F	61 Pasture/grassland/range, Good, HSG B								
	12,613	1	00.00% Pe	ervious Are	а						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description						
10.4	75	0.0100	0.12		Sheet Flow, 2A Grass: Short n= 0.150	P2= 3.14"					

Summary for Subcatchment PS-3: PS-3

Runoff = 27.4 cfs @ 12.36 hrs, Volume= 3.2 af, Depth> 1.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

Type III 24-hr 10-yr Rainfall=4.79"

Page 2

Prepared by TFMoran, Inc.

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

	A	rea (sf)	CN E	Description		
		89,870				ge, Good, HSG B
		75,753				ge, Good, HSG B
*		8,687				mp, Good, HSG B
*		12,862			Good, HSG	
		214			ace, HSG E	
		78,272				ge, Good, HSG C
	1	73,282				ge, Good, HSG C
*		2,697				mp, Good, HSG C
*		1,103			Good, HSG	
		4,848			ed pavemer	
		14,740			ace, HSG C	<u> </u>
		62,328		Veighted A		
	8	43,515			vious Area	
		18,813			ervious Are	а
		4,848	2	5.77% Uno	connected	
	-		01	N / N · · ·	o ::	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	9.9	100	0.0200	0.17		Sheet Flow, 3A
	0.0	47	0 0000	0.00		Grass: Short n= 0.150 P2= 3.14"
	0.8	47	0.0200	0.99		Shallow Concentrated Flow, 3B
	1.3	120	0.0500	1.57		Short Grass Pasture Kv= 7.0 fps
	1.5	120	0.0500	1.57		Shallow Concentrated Flow, 3C
	0.6	92	0.1300	2.52		Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, 3D
	0.0	92	0.1300	2.52		Short Grass Pasture Kv= 7.0 fps
	0.2	25	0.0800	1.98		Shallow Concentrated Flow, 3E
	0.2	20	0.0000	1.50		Short Grass Pasture Kv= 7.0 fps
	4.2	250	0.0200	0.99		Shallow Concentrated Flow, 3F
	1.2	200	0.0200	0.00		Short Grass Pasture Kv= 7.0 fps
	2.8	119	0.0100	0.70		Shallow Concentrated Flow, 3G
	2.0	110	0.0100	0.10		Short Grass Pasture Kv= 7.0 fps
	4.8	200	0.0100	0.70		Shallow Concentrated Flow, 3H
						Short Grass Pasture Kv= 7.0 fps
	0.0	9	0.2700	3.64		Shallow Concentrated Flow, 3I
		5				Short Grass Pasture Kv= 7.0 fps
	24.6	962	Total			· · · · · ·
	-					

Summary for Subcatchment PS-4: PS-4

Runoff = 0.4 cfs @ 12.16 hrs, Volume= 0.0 af, Depth> 1.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

Type III 24-hr 10-yr Rainfall=4.79"

Page 3

Prepared by TFMoran, Inc.

|--|

A	rea (sf)	CN E	escription		
	12,600	61 F	asture/gra	ssland/ran	ge, Good, HSG B
	5,413	55 V	Voods, Ğo	od, HSG B	
	1,001	61 F	asture/gra	ssland/ran	ge, Good, HSG B
	19,014	59 V	Veighted A	verage	
	19,014	1	00.00% Pe	ervious Are	a
	,				
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.1	44	0.0200	0.14		Sheet Flow, 4A
					Grass: Short n= 0.150 P2= 3.14"
4.2	55	0.0500	0.22		Sheet Flow, 4B
					Grass: Short n= 0.150 P2= 3.14"
0.3	27	0.0600	1.71		Shallow Concentrated Flow, 4C
					Short Grass Pasture Kv= 7.0 fps
0.0	12	0.3300	4.02		Shallow Concentrated Flow, 4D
					Short Grass Pasture Kv= 7.0 fps
0.2	14	0.0400	1.40		Shallow Concentrated Flow, 4E
					Short Grass Pasture Kv= 7.0 fps
9.8	152	Total			

Summary for Subcatchment PS-5: PS-5

-1.001010 = 0.0010 (00 12.70110, 001010) = 0.101, 000110 = 0.101, 000110 = 0.101, 000110 = 0.1001, 00011000, 000100000000000000000	Runoff	=	5.5 cfs @	12.45 hrs,	Volume=	0.7 af.	Depth>	1.95"
--	--------	---	-----------	------------	---------	---------	--------	-------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	Area (sf)	CN	Description
	37,608	61	Pasture/grassland/range, Good, HSG B
	2,705	61	Pasture/grassland/range, Good, HSG B
*	1,576	66	Adjusted CN w/ 30% Imp, Good, HSG B
*	1,815	100	8% Slope, Good, HSG B
	144,807	74	Pasture/grassland/range, Good, HSG C
	2,379	74	Pasture/grassland/range, Good, HSG C
	190,890	71	Weighted Average
	189,075		99.05% Pervious Area
	1,815		0.95% Impervious Area

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	6.0	54	0.0200	0.15		Sheet Flow, 5A
	3.1	46	0.0800	0.25		Grass: Short n= 0.150 P2= 3.14" Sheet Flow, 5B
						Grass: Short n= 0.150 P2= 3.14"
	0.3	32	0.0800	1.98		Shallow Concentrated Flow, 5C
						Short Grass Pasture Kv= 7.0 fps
	0.7	104	0.1300	2.52		Shallow Concentrated Flow, 5D
						Short Grass Pasture Kv= 7.0 fps
	0.2	25	0.0800	1.98		Shallow Concentrated Flow, 5E
						Short Grass Pasture Kv= 7.0 fps
	2.8	168	0.0200	0.99		Shallow Concentrated Flow, 5F
						Short Grass Pasture Kv= 7.0 fps
	1.2	114	0.0500	1.57		Shallow Concentrated Flow, 5G
						Short Grass Pasture Kv= 7.0 fps
	12.8	385	0.0100	0.50		Shallow Concentrated Flow, 5H
						Woodland Kv= 5.0 fps
	3.5	105	0.0100	0.50		Shallow Concentrated Flow, 5
_						Woodland Kv= 5.0 fps

30.6 1,033 Total

Summary for Subcatchment PS-6: PS-6

Runoff	=	0.3 cfs @	12.18 hrs,	Volume=	0.0 af, Depth> 1.24"
--------	---	-----------	------------	---------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	A	rea (sf)	CN [Description		
		10,885	61 F	Pasture/gra	ssland/rand	ge, Good, HSG B
		10,885		<u> </u>	ervious Are	
		10,000				6
-	Тс	Length	Slope	Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
6	5.8	44	0.0100	0.11		Sheet Flow, 6A
						Grass: Short n= 0.150 P2= 3.14"
4	.2	55	0.0500	0.22		Sheet Flow, 6B
						Grass: Short n= 0.150 P2= 3.14"
0	.3	27	0.0600	1.71		Shallow Concentrated Flow, 6C
						Short Grass Pasture Kv= 7.0 fps
0	0.0	12	0.3330	4.04		Shallow Concentrated Flow, 6D
						Short Grass Pasture Kv= 7.0 fps
0	.2	14	0.0400	1.40		Shallow Concentrated Flow, 6E
						Short Grass Pasture Kv= 7.0 fps
11	5	150	Total			

11.5 152 Total

Page 4

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 5

Summary for Subcatchment PS-7: PS-7

Runoff = 8.0 cfs @ 12.41 hrs, Volume= 1.0 af, Depth> 2.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	A	rea (sf)	CN [Description		
		22,760	61 F	Pasture/gra	ssland/ran	ge, Good, HSG B
	1	95,823				ge, Good, HSG C
_		27,771	80 F	Pasture/gra	ssland/ran	ge, Good, HSG D
	2	46,354	73 N	Veighted A	verage	
	2	46,354	1	00.00% Pe	ervious Are	a
	_				_	
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.6	13	0.0100	0.08		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.14"
	11.5	85	0.0100	0.12		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.14"
	2.6	108	0.0100	0.70		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	9.2	385	0.0100	0.70		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	2.5	104	0.0100	0.70		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	28.4	695	Total			

28.4 695 Total

Summary for Subcatchment PS-8: PS-8

Runoff = 3.5 cfs @ 12.27 hrs, Volume= 0.4 af, Depth> 1.72"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	Area (sf)	CN	Description
	34,023	61	Pasture/grassland/range, Good, HSG B
	13,406	61	Pasture/grassland/range, Good, HSG B
*	1,213	66	Adjusted CN w/ 30% Imp, Good, HSG B
	1,296	98	Paved parking, HSG B
	34,047	74	Pasture/grassland/range, Good, HSG C
	11,529	74	Pasture/grassland/range, Good, HSG C
	3,257	96	Gravel surface, HSG C
	12,557	61	Pasture/grassland/range, Good, HSG B
	111,328	68	Weighted Average
	110,032		98.84% Pervious Area
	1,296		1.16% Impervious Area

Type III 24-hr 10-yr Rainfall=4.79"

Page 6

Prepared by TFMoran, Inc.

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	48	0.0100	0.11		Sheet Flow, 8A
					Grass: Short n= 0.150 P2= 3.14"
3.9	50	0.0500	0.21		Sheet Flow, 8B
					Grass: Short n= 0.150 P2= 3.14"
4.0	376	0.0500	1.57		Shallow Concentrated Flow, 8C
					Short Grass Pasture Kv= 7.0 fps
0.1	16	0.0300	2.79		Shallow Concentrated Flow, 8D
					Unpaved Kv= 16.1 fps
3.1	131	0.0100	0.70		Shallow Concentrated Flow, 8E
					Short Grass Pasture Kv= 7.0 fps

18.4 621 Total

Summary for Subcatchment PS-9: PS-1

Runoff	=	1.4 cfs @	12.13 hrs,	Volume=	0.1 af, Depth> 1.24"
--------	---	-----------	------------	---------	----------------------

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Type III 24-hr 10-yr Rainfall=4.79"

	A	rea (sf)	CN [Description					
		39,687	61 F	Pasture/grassland/range, Good, HSG B					
		6,583	61 F	Pasture/grassland/range, Good, HSG B					
*		3,922	66 A	Adjusted CN w/ 30% Imp, Good, HSG B					
*		99	100 8	8% Slope, Good, HSG B					
		50,291	61 V	Weighted Average					
		50,192	ç	99.80% Pervious Area					
		99	(0.20% Impervious Area					
	Tc	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	6.9	100	0.0500	0.24		Sheet Flow, 9A			
						Grass: Short n= 0.150 P2= 3.14"			
	1.0	95	0.0500	1.57		Shallow Concentrated Flow, 9B			
						Short Grass Pasture Kv= 7.0 fps			
	0.1	14	0.1400	2.62		Shallow Concentrated Flow, 9C			
						Short Grass Pasture Kv= 7.0 fps			
	0.1	19	0.1000	2.21		Shallow Concentrated Flow, 9D			
_						Short Grass Pasture Kv= 7.0 fps			
_	0.4	000	Tatal			Short Grass Pasture Kv= 7.0 fps			

8.1 228 Total

Summary for Reach PR-1: VEG SWALE #1

Inflow Area =	1.155 ac,	0.20% Impervious,	Inflow Depth >	1.24"	for 10-yr event
Inflow =	1.4 cfs @	12.13 hrs, Volume=	0.1 af		-
Outflow =	1.3 cfs @	12.17 hrs, Volume=	0.1 af,	Atten= 4	1%, Lag= 2.1 min

20025-00 - POST DEV_2023-09-01

Type III 24-hr 10-yr Rainfall=4.79"

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 7

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.97 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.45 fps, Avg. Travel Time= 5.2 min

Peak Storage= 200 cf @ 12.17 hrs Average Depth at Peak Storage= 0.38', Surface Width= 2.30' Bank-Full Depth= 1.00' Flow Area= 3.0 sf, Capacity= 17.0 cfs

0.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 3.0 '/' Top Width= 6.00' Length= 454.0' Slope= 0.0352 '/' Inlet Invert= 196.00', Outlet Invert= 180.00'

Summary for Reach PR-2: VEG SWALE #2

Inflow Area	a =	2.097 ac,	0.00% Impervious,	Inflow Depth >	1.51" fo	r 10-yr event
Inflow	=	3.3 cfs @	12.12 hrs, Volume=	0.3 af		-
Outflow	=	3.1 cfs @	12.16 hrs, Volume=	0.3 af,	Atten= 6%	, Lag= 2.4 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 2.80 fps, Min. Travel Time= 2.7 min Avg. Velocity = 1.19 fps, Avg. Travel Time= 6.5 min

Peak Storage= 510 cf @ 12.16 hrs Average Depth at Peak Storage= 0.46', Surface Width= 3.78' Bank-Full Depth= 1.00' Flow Area= 4.0 sf, Capacity= 17.4 cfs

1.00' x 1.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 3.0 '/' Top Width= 7.00' Length= 461.0' Slope= 0.0174 '/' Inlet Invert= 180.00', Outlet Invert= 172.00' 20025-00 - POST DEV_2023-09-01

Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 8

Summary for Reach PR-3: VEG SWALE #3

 Inflow Area =
 19.796 ac, 2.18% Impervious, Inflow Depth > 1.95" for 10-yr event

 Inflow =
 27.4 cfs @
 12.36 hrs, Volume=
 3.2 af

 Outflow =
 27.0 cfs @
 12.41 hrs, Volume=
 3.2 af, Atten= 2%, Lag= 2.8 min

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Max. Velocity= 3.42 fps, Min. Travel Time= 3.5 min Avg. Velocity = 1.51 fps, Avg. Travel Time= 7.8 min

Peak Storage= 5,598 cf @ 12.41 hrs Average Depth at Peak Storage= 1.20', Surface Width= 10.18' Bank-Full Depth= 2.00' Flow Area= 18.0 sf, Capacity= 82.1 cfs

3.00' x 2.00' deep channel, n= 0.030 Short grass Side Slope Z-value= 3.0 '/' Top Width= 15.00' Length= 710.0' Slope= 0.0070 '/' Inlet Invert= 174.00', Outlet Invert= 169.00'

‡

Summary for Pond BIO#1: BIO-RET AREA #1

[61] Hint: Exceeded Reach PR-3 outlet invert by 0.38' @ 13.40 hrs

Inflow Area =	19.796 ac,	2.18% Impervious,	Inflow Depth >	1.94" for 10-yr event
Inflow =	27.0 cfs @	12.41 hrs, Volume=	3.2 af	-
Outflow =	5.2 cfs @	13.40 hrs, Volume=	2.1 af,	Atten= 81%, Lag= 59.6 min
Discarded =	1.4 cfs @	13.40 hrs, Volume=	1.3 af	-
Primary =	3.7 cfs @	13.40 hrs, Volume=	0.8 af	

Routing by Dyn-Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs Peak Elev= 169.38' @ 13.40 hrs Surf.Area= 36,203 sf Storage= 62,921 cf Flood Elev= 170.50' Surf.Area= 444,489 sf Storage= 208,240 cf

Plug-Flow detention time= 215.8 min calculated for 2.1 af (67% of inflow) Center-of-Mass det. time= 113.6 min (979.0 - 865.3)

Volume	Invert	Avail.Storage	Storage Description
#1	167.00'	0 cf	FOREBAY #1 (0% VOIDS) (Prismatic)Listed below (Recalc) -Impervious
			6,135 cf Overall x 0.0% Voids
#2	166.50'	208,240 cf	BIO-RETENTION AREA #1 (Prismatic)Listed below (Recalc)
		208,240 cf	Total Available Storage

20025-00 - POST DEV_2023-09-01

Prepared by TFMoran, Inc.

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 9

Type III 24-hr 10-yr Rainfall=4.79"

Elevatio	on	Surf.Area		Inc.Store	Cu	m.Store	
(fee		(sq-ft)		(cubic-feet)		pic-feet)	
167.0	00	855		0		0	
168.0	00	3,025		1,940		1,940	
169.0	00	5,365		4,195		6,135	
Elevatio	n	Surf.Area	Void	s In	c.Store	Cum.Store	3
(fee		(sq-ft)	(%)		ic-feet)	(cubic-feet)	
166.5		23,384	0.0	, ,	0		2
167.2		23,384	40.0		7.015	7.015	
168.0	-	23,384	100.0		17,538	24,553	
169.0		27,239	100.		25,312	49,865	
169.0		33,557	100.		304	50,169	
170.0		40,722	100.		36,768	86,937	
170.5	50	444,489	100.		21,303	208,240)
Device	Routing	In	vert	Outlet Devi	ces		
#1	Primary	169	9.00'				rested Rectangular Weir
				· · ·			.00 1.20 1.40 1.60
	_ .						4 2.63 2.64 2.64 2.63
#2	Discarde	d 166	6.50'	1.700 in/hr	Exfiltrati	on over Surfac	ce area Phase-In= 0.01'

Discarded OutFlow Max=1.4 cfs @ 13.40 hrs HW=169.38' (Free Discharge) **2=Exfiltration** (Exfiltration Controls 1.4 cfs)

Summary for Link POI-A: TOWLE ROAD

Inflow Area	a =	1.155 ac,	0.20% Impervious,	Inflow Depth >	1.24" fc	r 10-yr event
Inflow	=	1.3 cfs @	12.17 hrs, Volume=	0.1 af		
Primary	=	1.3 cfs @	12.17 hrs, Volume=	0.1 af,	Atten= 0%	o, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-B: LOT R-12-25

Inflow Area =	0.290 ac,	0.00% Impervious,	Inflow Depth >	1.24" for	10-yr event
Inflow =	0.3 cfs @	12.16 hrs, Volume=	0.0 af		
Primary =	0.3 cfs @	12.16 hrs, Volume=	0.0 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-C: LOT R-12-24

Inflow Area	a =	0.437 ac,	0.00% Impervious,	Inflow Depth >	1.11" fo	or 10-yr event
Inflow	=	0.4 cfs @	12.16 hrs, Volume=	0.0 af		
Primary	=	0.4 cfs @	12.16 hrs, Volume=	0.0 af,	Atten= 0%	6, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 10-yr Rainfall=4.79"

Page 10

Summary for Link POI-D: LOTS R-11-4-A, 4-B, & 14

Inflow Area	a =	0.250 ac,	0.00% Impervious,	Inflow Depth >	1.24" for	10-yr event
Inflow	=	0.3 cfs @	12.18 hrs, Volume=	0.0 af		·
Primary	=	0.3 cfs @	12.18 hrs, Volume=	0.0 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-E: LOT R-11-14

[43] Hint: Has no inflow (Outflow=Zero)

Primary = 0.0 cfs @ 0.00 hrs, Volume= 0.0 af

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

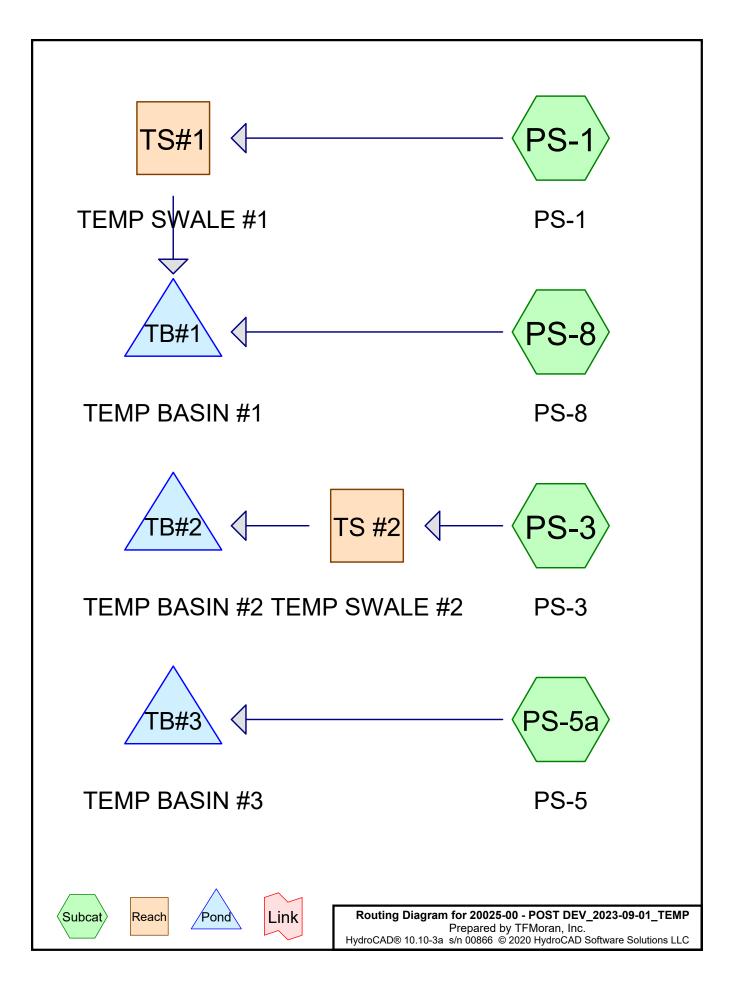
Summary for Link POI-F: LOT R-11-13

[43] Hint: Has no inflow (Outflow=Zero)

Primary = 0.0 cfs @ 0.00 hrs, Volume= 0.0 af

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-G: LOT R-11-9


Inflow Area =	4.382 ac,	0.95% Impervious,	Inflow Depth >	1.95" for	10-yr event
Inflow =	5.5 cfs @	12.45 hrs, Volume=	0.7 af		
Primary =	5.5 cfs @	12.45 hrs, Volume=	0.7 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

Summary for Link POI-H: LOT R-12-27

Inflow Area =	30.105 ac,	1.53% Impervious,	Inflow Depth >	0.98" fo	or 10-yr event
Inflow =	12.8 cfs @	12.34 hrs, Volume=	2.5 af		-
Primary =	12.8 cfs @	12.34 hrs, Volume=	2.5 af,	Atten= 0%	6, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.05 hrs

20025-00 - POST DEV_2023-09-01_TEMP Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.005	96	Gravel surface, HSG B (PS-3)
0.444	96	Gravel surface, HSG C (PS-1, PS-3, PS-8)
10.403	86	Newly graded area, HSG B (PS-1, PS-3, PS-5a, PS-8)
14.943	91	Newly graded area, HSG C (PS-1, PS-3, PS-5a, PS-8)
0.030	98	Paved parking, HSG B (PS-8)
0.111	98	Unconnected pavement, HSG C (PS-3)
25.936	89	TOTAL AREA

20025-00 - POST DEV_2023-09-01_TEMP Prepared by TFMoran, Inc. HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
10.437	HSG B	PS-1, PS-3, PS-5a, PS-8
15.498	HSG C	PS-1, PS-3, PS-5a, PS-8
0.000	HSG D	
0.000	Other	
25.936		TOTAL AREA

20025-00 - POST DEV_2023-09-01_TEMP

Prepared by TFMoran, Inc.

HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Type III 24-hr 2-yr Rainfall=3.14"

Page 4

Time span=0.00-24.00 hrs, dt=0.05 hrs, 481 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

SubcatchmentPS-1: PS-1	Runoff Area=91,352 sf 0.00% Impervious Runoff Depth>1.86" Flow Length=503' Tc=12.3 min CN=87 Runoff=3.7 cfs 0.3 af
SubcatchmentPS-3: PS-3	Runoff Area=862,328 sf 0.56% Impervious Runoff Depth>2.02" Flow Length=1,006' Tc=25.6 min CN=89 Runoff=28.4 cfs 3.3 af
SubcatchmentPS-5a: PS-5	Runoff Area=64,751 sf 0.00% Impervious Runoff Depth>1.94" Flow Length=543' Tc=14.3 min CN=88 Runoff=2.6 cfs 0.2 af
SubcatchmentPS-8: PS-8	Runoff Area=111,328 sf 1.16% Impervious Runoff Depth>1.94" Flow Length=621' Tc=18.4 min CN=88 Runoff=4.0 cfs 0.4 af
Reach TS #2: TEMP SWALE #2 n=0	Avg. Flow Depth=1.10' Max Vel=4.02 fps Inflow=28.4 cfs 3.3 af .022 L=788.0' S=0.0057 '/' Capacity=100.9 cfs Outflow=28.0 cfs 3.3 af
Reach TS#1: TEMP SWALE #1	Avg. Flow Depth=0.43' Max Vel=3.67 fps Inflow=3.7 cfs 0.3 af =0.022 L=461.0' S=0.0174 '/' Capacity=23.8 cfs Outflow=3.6 cfs 0.3 af
Pond TB#1: TEMP BASIN #1	Peak Elev=171.44' Storage=32,079 cf Inflow=7.6 cfs 0.7 af Outflow=0.0 cfs 0.0 af
Pond TB#2: TEMP BASIN #2	Peak Elev=170.02' Storage=144,558 cf Inflow=28.0 cfs 3.3 af Outflow=0.0 cfs 0.0 af
Pond TB#3: TEMP BASIN #3	Peak Elev=173.08' Storage=10,456 cf Inflow=2.6 cfs 0.2 af Outflow=0.0 cfs 0.0 af

Total Runoff Area = 25.936 ac Runoff Volume = 4.3 af Average Runoff Depth = 1.99" 99.46% Pervious = 25.795 ac 0.54% Impervious = 0.141 ac
 20025-00 - POST DEV_2023-09-01_TEMP
 Ty

 Prepared by TFMoran, Inc.
 HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

ElevationSurfaceStorage (cubic-feet)ElevationSurfaceStorage (sq-ft) $(170.00$ 20,7290171.06 $(22,934$ 23,139 170.04 20,812831171.1023,01924,058 170.06 20,8841,247171.1223,06224,519 170.08 20,8951,665171.1423,14825,443 170.12 20,9782,602171.1623,14825,443 170.12 20,9782,502171.1823,23326,831 170.16 21,0613,343171.2223,23326,836 170.20 21,1444,187171.2623,36227,769 170.22 21,1864,611171.2823,44828,705 170.24 21,2275,035171.3023,44828,705 170.24 21,2695,460171.3223,49029,174 170.32 21,3936,740171.3823,61930,588 170.34 21,4257,168171.4223,70531,534 170.34 21,5598,458171.4623,79032,484 170.44 21,6649,755171.5223,91933,915 170.44 21,6649,755171.5223,91933,915 170.56 21,87610,189171.4823,83332,960 170.44 21,6649,755171.5523,91933,915 170.56 21,89211,940171.6624,19336,318 <th></th> <th></th> <th></th> <th>I</th> <th></th> <th>-</th>				I		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				171.10		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.06	20,854	1,247	171.12	23,062	24,519
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.08	20,895	1,665	171.14	23,105	24,981
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.10	20,937	2,083	171.16	23,148	25,443
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.12	20,978	2,502	171.18	23,191	25,907
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.14	21,020	2,922	171.20	23,233	26,371
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.16	21,061	3,343	171.22	23,276	26,836
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.18	21,103	3,765	171.24	23,319	27,302
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.20	21,144	4,187	171.26	23,362	27,769
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	170.22	21,186	4,611	171.28	23,405	28,236
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
170.44 $21,642$ $9,322$ 171.50 $23,876$ $33,437$ 170.46 $21,684$ $9,755$ 171.52 $23,919$ $33,915$ 170.48 $21,725$ $10,189$ 171.54 $23,962$ $34,394$ 170.50 $21,767$ $10,624$ 171.56 $24,005$ $34,874$ 170.52 $21,809$ $11,060$ 171.58 $24,047$ $35,354$ 170.54 $21,850$ $11,496$ 171.60 $24,090$ $35,836$ 170.56 $21,892$ $11,934$ 171.62 $24,133$ $36,318$ 170.56 $21,892$ $11,934$ 171.62 $24,133$ $36,318$ 170.58 $21,933$ $12,372$ 171.64 $24,176$ $36,801$ 170.60 $21,975$ $12,811$ 171.66 $24,219$ $37,285$ 170.62 $22,016$ $13,251$ 171.68 $24,262$ $37,770$ 170.64 $22,058$ $13,692$ 171.70 $24,304$ $38,255$ 170.66 $22,099$ $14,133$ 171.72 $24,347$ $38,742$ 170.68 $22,141$ $14,576$ 171.74 $24,390$ $39,229$ 170.70 $22,182$ $15,019$ 171.78 $24,476$ $40,206$ 170.74 $22,265$ $15,908$ 171.80 $24,519$ $40,696$ 170.76 $22,307$ $16,354$ 171.86 $24,647$ $42,171$ 170.80 $22,390$ $17,248$ 171.86 $24,647$ $42,171$ 170.84 $22,473$ <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						37 285
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
170.7422,26515,908171.8024,51940,696170.7622,30716,354171.8224,56141,187170.7822,34816,800171.8424,60441,679170.8022,39017,248171.8624,64742,171170.8222,43117,696171.8824,69042,665170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654					,	
170.7622,30716,354171.8224,56141,187170.7822,34816,800171.8424,60441,679170.8022,39017,248171.8624,64742,171170.8222,43117,696171.8824,69042,665170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654						
170.7822,34816,800171.8424,60441,679170.8022,39017,248171.8624,64742,171170.8222,43117,696171.8824,69042,665170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654						,
170.8022,39017,248171.8624,64742,171170.8222,43117,696171.8824,69042,665170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654						
170.8222,43117,696171.8824,69042,665170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654						
170.8422,47318,145171.9024,73343,159170.8622,51418,595171.9224,77643,654						
170.86 22,514 18,595 171.92 24,776 43,654						
						,
170.90 22,597 19,497 171.96 24,861 44,647						
170.92 22,639 19,949 171.98 24,904 45,144						
170.92 22,680 19,949 171.90 24,904 45,144 170.94 22,680 20,402 172.00 24,947 45,643						
170.96 22,722 20,856				172.00	24,347	-0,0-0
170.98 22,763 21,311						
171.00 22,805 21,767						
171.02 22,848 22,224						
171.02 22,848 22,224						
	171.04	22,001	22,001			

Stage-Area-Storage for Pond TB#1: TEMP BASIN #1

20025-00 - POST DEV_2023-09-01_TEMPType III 24-hr 2-yr RainfallPrepared by TFMoran, Inc.HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
167.00	38,052	0	169.65	54,701	123,952
167.05	38,407	1,911	169.70	54,992	126,694
167.10	38,761	3,841	169.75	55,284	129,451
167.15			169.80		
	39,116	5,788		55,576	132,222
167.20	39,471	7,752	169.85	55,867	135,008
167.25	39,826	9,735	169.90	56,159	137,809
167.30	40,181	11,735	169.95	56,450	140,624
167.35	40,535	13,753	170.00	56,742	143,454
167.40	40,890	15,788	170.05	57,037	146,298
167.45	41,245	17,842	170.10	57,331	149,158
167.50	41,600	19,913	170.15	57,626	152,032
167.55	41,954	22,002	170.20	57,920	154,920
167.60	42,309	24,108	170.25	58,215	157,824
167.65	42,664	26,233	170.30	58,509	160,742
167.70	43,018	28,375	170.35	58,803	163,674
167.75	43,373	30,534	170.40	59,098	166,622
167.80	43,728	32,712	170.45	59,392	169,584
167.85	44,083	34,907	170.50	59,687	172,561
167.90	44,438	37,120			
167.95	44,792	39,351			
168.00	45,147	41,600			
168.05	45,435	43,864			
168.10	45,723	46,143			
168.15	46,011	48,436			
168.20	46,300	50,744			
168.25	46,588	53,066			
168.30	46,876	55,403			
168.35	47,164	57,754			
168.40	47,452	60,119			
168.45	47,740	62,499			
168.50	48,029	64,893			
168.55	48,317	67,302			
168.60	48,605	69,725			
168.65	48,893	72,162			
168.70	49,181	74,614			
168.75	49,469	77,081			
168.80	49,757	79,561			
168.85	50,046	82,056			
168.90	50,334	84,566			
168.95	50,622				
		87,090			
169.00	50,910	89,628			
169.05	51,202	92,181			
169.10	51,493	94,748			
169.15	51,785	97,330			
169.20	52,076	99,927			
169.25	52,368	102,538			
169.30	52,660	105,163			
169.35	52,951	107,804			
169.40	53,243	110,459			
169.45	53,534	113,128			
169.50	53,826	115,812			
169.55	54,118	118,511			
169.60	54,409	121,224			
			I		

Stage-Area-Storage for Pond TB#2: TEMP BASIN #2

 20025-00 - POST DEV_2023-09-01_TEMP
 Ty

 Prepared by TFMoran, Inc.
 HydroCAD® 10.10-3a s/n 00866 © 2020 HydroCAD Software Solutions LLC

- 1 <i>i</i> :	. .	01		o (0
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	<u>(sq-ft)</u>	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
172.00	8,938	0	173.06	10,495	10,296
172.02	8,967	179	173.08	10,526	10,507
172.04	8,997	359	173.10	10,557	10,717
172.06	9,026	539	173.12	10,588	10,929
172.08	9,055	720	173.14	10,620	11,141
172.10	9,084	901	173.16	10,651	11,354
172.12	9,114	1,083	173.18	10,682	11,567
172.14	9,143	1,266	173.20	10,713	11,781
172.16 172.18	9,172	1,449	173.22 173.24	10,744	11,995
172.10	9,201	1,633		10,776	12,211
	9,231	1,817	173.26	10,807	12,427
172.22 172.24	9,260	2,002	173.28	10,838	12,643
172.24	9,289 9,318	2,187 2,373	173.30 173.32	10,869	12,860
172.28	9,348	2,560	173.34	10,901 10,932	13,078 13,296
172.20	9,340	2,500	173.34	10,952	13,515
172.30	9,406	2,935	173.38	10,903	13,735
172.32	9,400	3,123	173.40	11,025	13,955
172.34	9,465	3,312	173.40	11,023	14,176
172.38	9,494	3,502	173.42	11,088	14,170
172.40	9,523	3,692	173.44	11,119	14,619
172.40	9,523	3,883	173.48	11,150	14,842
172.42	9,582	4,074	173.50	11,182	15,065
172.44	9,611	4,266	173.52	11,213	15,289
172.48	9,640	4,459	173.54	11,244	15,514
172.50	9,670	4,652	173.56	11,275	15,739
172.52	9,699	4,846	173.58	11,306	15,965
172.54	9,728	5,040	173.60	11,338	16,191
172.56	9,757	5,235	173.62	11,369	16,418
172.58	9,787	5,430	173.64	11,400	16,646
172.60	9,816	5,626	173.66	11,431	16,874
172.62	9,845	5,823	173.68	11,462	17,103
172.64	9,874	6,020	173.70	11,494	17,333
172.66	9,904	6,218	173.72	11,525	17,563
172.68	9,933	6,416	173.74	11,556	17,794
172.70	9,962	6,615	173.76	11,587	18,025
172.72	9,991	6,815	173.78	11,619	18,257
172.74	10,021	7,015	173.80	11,650	18,490
172.76	10,050	7,215	173.82	11,681	18,723
172.78	10,079	7,417	173.84	11,712	18,957
172.80	10,108	7,619	173.86	11,743	19,192
172.82	10,138	7,821	173.88	11,775	19,427
172.84	10,167	8,024	173.90	11,806	19,663
172.86	10,196	8,228	173.92	11,837	19,899
172.88	10,225	8,432	173.94	11,868	20,136
172.90	10,255	8,637	173.96	11,900	20,374
172.92	10,284	8,842	173.98	11,931	20,612
172.94	10,313	9,048	174.00	11,962	20,851
172.96	10,342	9,255			
172.98	10,372	9,462			
173.00	10,401	9,670			
173.02	10,432	9,878			
173.04	10,463	10,087			
			I		

Stage-Area-Storage for Pond TB#3: TEMP BASIN #3

PART 6

RIPRAP CALCULATIONS

Unitil Kingston Solar Facility

14 & 24 Towle Road, Kingston, NH

Tax Map R-12 Lots 25 & 26

Date: July 6, 2023

Revised: September 1, 2023

Project No.: 20025-00

OUTLET	Do (ft.)	Q25 (cfs)	Tw (ft.)	La (ft.)	Wup (ft.)	Wdn (ft.)	d50 (in.)*
Bio-Ret. #1 Spillway	15.00	17.1	1.1	105.5	45.0	150.5	6.0

*Note:6"min.

Notes:

1 Use NHDOT Class C Stone

2 Depth of Stone to be 12" min. or 1.5 times d50 - which ever is larger

3 Actual riprap dimensions may vary from calculations. See Plans.

Calculations				
When Tw > or = 0.5Do at pipe outlet:				
$La = 3Q/Do^{3}/2 + 7Do$				
Wup = 3Do				
Wdn = 3Do + 0.4La				
d50 = (0.02Q^4/3)/(TwDo)				

Where:

Tw is the tailwater depth at the outlet of the pipe or channel

Do is the diameter of the pipe or the width of channel

Q is the discharge from the pipe of channel

La is the length of apron

Wup is the upstream width of apron

Wdn is the downstream width of apron

d50 is the median stone diameter

PART 7

Infiltration Feasibility Report

Unitil Kingston Solar Project Tax Map R12, Lots 25 & 26 14 & 24 Towle Road, Kingston, NH 03848 July 6, 2023 *Revised: September 1, 2023*

Table of Contents

- (a) Location of Practice
- (b) Existing Topography at Location of Practice
- (c) Test Pit Locations
- (d) Seasonal High-Water Table (SHWT) and Bedrock Elevations
- (e) Profile Descriptions
- (f) Soils in Area of Proposed Practice
- (g) Number and Locations of Infiltration Tests
- (h) Date Data Collected
- (i) Summary of Design Infiltration Rate
- (j) Attachments
 - (a) USDA NRCS Soils Report
 - (b) Test Pit Logs
 - (c) Infiltration Test Memos & Amoozemeter Field Data Sheets
 - (d) Plans of Proposed Practices

(a) Location of Practice

The proposed Photovoltaic (PV) Solar Array project is located at 14 & 24 Towle Road, in Kingston, NH Tax Map R-12, Lot 26 (approximately 32.9 +/- acres) and part of Lot 25 (approximately 3.7 +/-) located within the Rural Residential District. The site is abutted by the existing Eversource Peaslee and Unitil Kingston Substations to the east, residential properties to the north, south, and west. Towle Road (Class VI) encompasses the northwestern property line. An electric utility corridor traverses through the property, terminating at the existing substations. Access to the parcel is via the class IV portion of Towle Road.

An open and closed drainage system is proposed to capture runoff from the site for this phase of the project. One (1) proposed Bio- Retention Area with sediment forebay will be utilized to manage runoff and provide the pretreatment/treatment for a majority of the site. The northwest and southeast portions of the on the site will discharge though two (2) Vegetated Buffer Areas prior to entering wetland areas.

(b) Existing Topography at Location of Practice

The proposed consolidated lot is a total of 36.5+/- acres and the entire will be disturbed as part of the proposed development due to clearing of the site. The site is relatively steep, with approximately 30 feet of grade change (200 feet to 170 feet). The highest elevations on the property are located in the northeast and the southern portion of the site is the lowest elevation.

(c) Test Pit Locations

Nine (9) test pits were performed by Matt Routhier, on April 13th & 18th, 2023. The test pit locations are shown on the Plan in Section (j).

(d) Seasonal High-Water Table and Bedrock Elevations

Test Pit #1: Surface Elevation = 175.0ESHWT: Below Grade @ 30" (172.5) Water Table @ 50" (Elev. = 170.8) Ledge/bottom of Test Pit @ 50" (Elev. = 170.8) Test Pit #2: Surface Elevation = 172.8 ESHWT: Below Grade @ 18" (171.3) Water Table @ 37" (Elev. = 169.7) Ledge/bottom of Test Pit @ 37" (Elev. = 169.7) Test Pit #3: Surface Elevation = 172.7 ESHWT: Below Grade @ 30" (170.2) Water Table @ 50" (Elev. = 168.5) Ledge/bottom of Test Pit @ 50" (Elev. = 168.5) Test Pit #4: Surface Elevation = 170.6ESHWT: Below Grade @ 36" (167.6) Water Table @ 43" (Elev. = 167.0) Ledge/bottom of Test Pit @ 43" (Elev. = 167.0) Test Pit #5: Surface Elevation = 171.6 ESHWT: Below Grade @ 21" (169.9) Water Table @ 22" (Elev. = 169.8) Ledge/bottom of Test Pit @ 26" (Elev. = 169.4) Test Pit #6: Surface Elevation = 170.1 ESHWT: Below Grade @ 4" (169.8) Water Table @ 6" (Elev. = 169.6) Ledge/bottom of Test Pit @ 6" (Elev. = 169.6) Test Pit #7: Surface Elevation = 168.0 ESHWT: Below Grade @ 29" (165.6) Water Table @ 42" (Elev. = 164.5) Ledge/bottom of Test Pit @ 42" (Elev. = 164.5) Test Pit #8: Surface Elevation = 166.7ESHWT: Below Grade @ 28" (164.4) Water Table @ 36" (Elev. = 163.7) Ledge/bottom of Test Pit @ 43" (Elev. = 163.7) Test Pit #9: Surface Elevation = 166.6 ESHWT: Below Grade @ 32" (163.9) Water Table @ 40" (Elev. = 163.3)

Ledge/bottom of Test Pit @ 40" (Elev. = 163.3)

(e) **Profile Descriptions**

See the test pit logs in Section (j) showing the soil information.

(f) Soils in Area of Proposed Practice

The soil series in the area of the proposed practices are shown on the NRCS Soils Report found in Section (j).

(g) Number and Location of Test Locations

Infiltration testing was done in the area of the proposed infiltration practices. See memo and log in section (j)

(h) Date Data was collected:

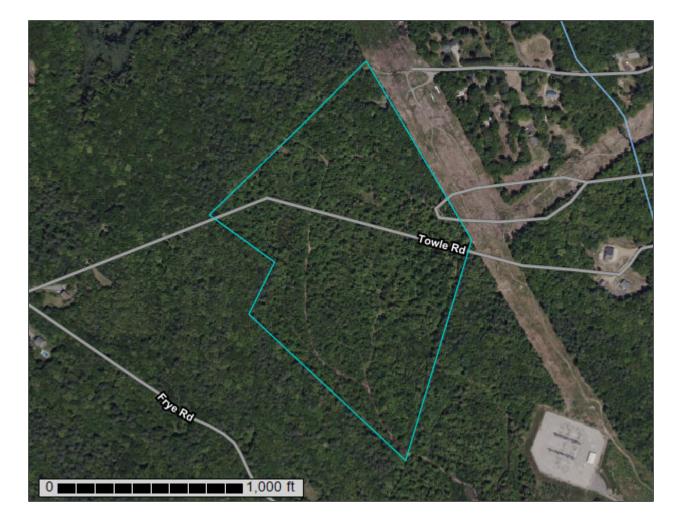
<u>Test Pits</u>	
Date:	April 13 th & 18 th , 2023
Performed by:	Paul H. O'Hanlon, Environmental Permitting Specialist
Town/State:	Kingston, NH
TFM Project Name:	Unitil Kingston Solar Project
Infiltration Test	
Date:	April 13 th & 18 th , 2023
_	April 13 th & 18 th , 2023 Paul H. O'Hanlon, Environmental Permitting Specialist
Date:	
Date: Performed by:	Paul H. O'Hanlon, Environmental Permitting Specialist

(i) Summary of Design Infiltration Results

Infiltration tests were performed on site on April 13th, 2023, using an Amoozemeter. See the Field Data Sheets in section (j). The design infiltration rate used in the drainage model was calculated using measured infiltration rates with a factor of safety of 2.

(j) Attachments

- (a) USDA NRCS Soils Report
- (b) Test Pit Logs
- (c) Infiltration Test Memos & Amoozemeter Field Data Sheets
- (d) Plans of Proposed Practices



United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for **Rockingham County, New Hampshire**

Proposed Unitil Solar Field - 24 Towle Road, Kingston, NH 03848

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface
Soil Map
Soil Map9
Legend10
Map Unit Legend 11
Map Unit Descriptions11
Rockingham County, New Hampshire13
43B—Canton fine sandy loam, 0 to 8 percent slopes, very stony
447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony 14
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony16
Soil Information for All Uses
Soil Reports
AOI Inventory18
Legend
References

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

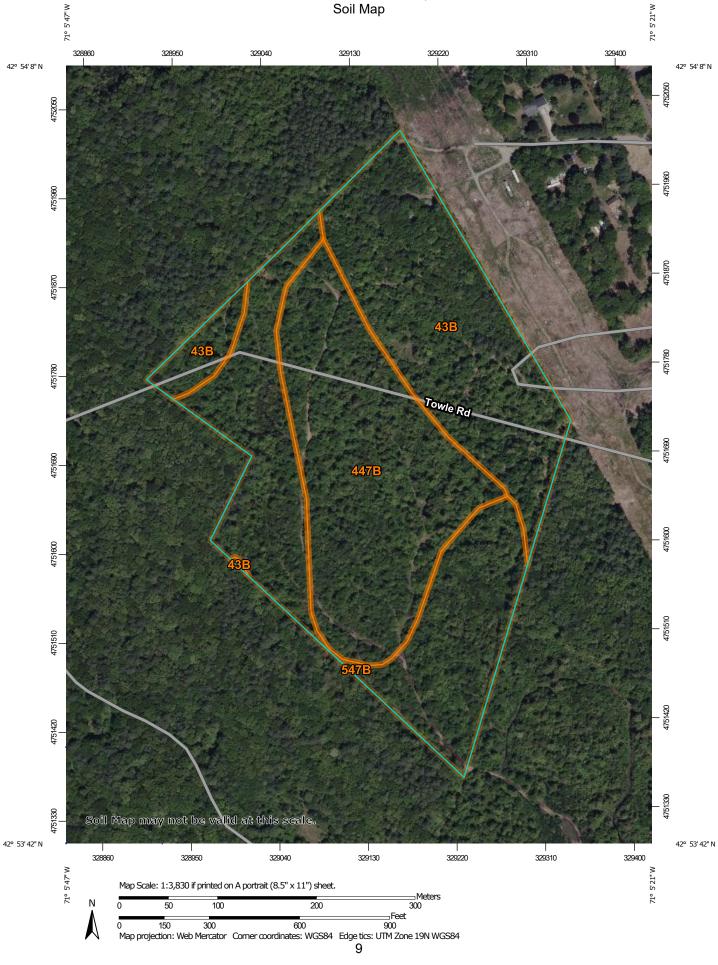
The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.


After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP L	EGEND	MAP INFORMATION	
	terest (AOI) Area of Interest (AOI)	Spoil Area	t 1:24,000.	ped at
Soils ~~ Special (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Point Features Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit	Image: Wery Story Image: Wet Spot Image: Other Image: Other	warning. Soli Map may not be valid at this scale. warning. Soli Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping misunderstanding of the detail of mapping and acc line placement. The maps do not show the small al contrasting soils that could have been shown at a r scale. Ind Canals Highways Source of Map: Natural Resources Conservation Web Soil Survey URL:	uracy of soil reas of more detailed r map Service
⊹ ◎ < + :: = <	Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot Sinkhole	Major Roa	dsMaps from the Web Soil Survey are based on the M projection, which preserves direction and shape bud distance and area. A projection that preserves area Albers equal-area conic projection, should be used accurate calculations of distance or area are requirThis product is generated from the USDA-NRCS or of the version date(s) listed below.Soil Survey Area:Rockingham County, New Ham Survey Area Data:Version 25, Sep 12, 2022Soil map units are labeled (as space allows) for ma 1:50,000 or larger.Date(s) aerial images were photographed:May 2	Web Mercator at distorts a, such as the l if more red. ertified data as npshire ap scales
\$ Ø	Slide or Slip Sodic Spot		5, 2022 The orthophoto or other base map on which the so compiled and digitized probably differs from the ba imagery displayed on these maps. As a result, som shifting of map unit boundaries may be evident.	il lines were ckground

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
43B	Canton fine sandy loam, 0 to 8 percent slopes, very stony	12.1	33.2%
447B	Scituate-Newfields complex, 3 to 8 percent slopes, very stony	12.5	34.4%
547B	Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	11.8	32.4%
Totals for Area of Interest		36.4	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate

pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Rockingham County, New Hampshire

43B—Canton fine sandy loam, 0 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 2w811 Elevation: 0 to 1,180 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of local importance

Map Unit Composition

Canton, very stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Canton, Very Stony

Setting

Landform: Hills, ridges, moraines Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Parent material: Coarse-loamy over sandy melt-out till derived from gneiss, granite, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 5 inches:* fine sandy loam *Bw1 - 5 to 16 inches:* fine sandy loam *Bw2 - 16 to 22 inches:* gravelly fine sandy loam *2C - 22 to 67 inches:* gravelly loamy sand

Properties and qualities

Slope: 0 to 8 percent

Surface area covered with cobbles, stones or boulders: 1.6 percent Depth to restrictive feature: 19 to 39 inches to strongly contrasting textural

stratification

Drainage class: Well drained

Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: B Ecological site: F144AY034CT - Well Drained Till Uplands

Hydric soil rating: No

Minor Components

Scituate, very stony

Percent of map unit: 9 percent Landform: Hills, ground moraines, drumlins Landform position (two-dimensional): Summit, backslope, footslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Montauk, very stony

Percent of map unit: 5 percent Landform: Recessionial moraines, hills, ground moraines, drumlins Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Gloucester, very stony

Percent of map unit: 4 percent Landform: Ridges, moraines, hills Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Side slope, crest Down-slope shape: Convex, linear Across-slope shape: Convex Hydric soil rating: No

Swansea

Percent of map unit: 2 percent Landform: Bogs, swamps, marshes, kettles, depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cnr Elevation: 0 to 1,000 feet Mean annual precipitation: 35 to 56 inches Mean annual air temperature: 45 to 52 degrees F Frost-free period: 120 to 200 days Farmland classification: Not prime farmland

Map Unit Composition

Scituate and similar soils: 50 percent *Newfields and similar soils:* 25 percent

Minor components: 25 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scituate

Typical profile

H1 - 0 to 8 inches: fine sandy loam

- H2 8 to 32 inches: cobbly fine sandy loam
- H3 32 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Description of Newfields

Setting

Parent material: Till

Typical profile

H1 - 0 to 9 inches: fine sandy loam H2 - 9 to 35 inches: fine sandy loam H3 - 35 to 64 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 24 to 48 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: F144AY008CT - Moist Till Uplands Hydric soil rating: No

Minor Components

Walpole

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Ridgebury

Percent of map unit: 5 percent Landform: Depressions Hydric soil rating: Yes

Canton

Percent of map unit: 5 percent *Hydric soil rating:* No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Not named

Percent of map unit: 5 percent Hydric soil rating: No

547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: 9cpd Elevation: 0 to 2,100 feet Mean annual precipitation: 28 to 48 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 100 to 195 days Farmland classification: Not prime farmland

Map Unit Composition

Walpole and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Walpole

Setting

Landform: Depressions

Typical profile

H1 - 0 to 7 inches: very fine sandy loam

- H2 7 to 16 inches: sandy loam
- H3 16 to 60 inches: gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 0.1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 12 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A/D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Minor Components

Scarboro

Percent of map unit: 10 percent Landform: Depressions Hydric soil rating: Yes

Newfields

Percent of map unit: 5 percent *Hydric soil rating:* No

Squamscott

Percent of map unit: 5 percent Landform: Marine terraces Hydric soil rating: Yes

Soil Information for All Uses

Soil Reports

The Soil Reports section includes various formatted tabular and narrative reports (tables) containing data for each selected soil map unit and each component of each unit. No aggregation of data has occurred as is done in reports in the Soil Properties and Qualities and Suitabilities and Limitations sections.

The reports contain soil interpretive information as well as basic soil properties and qualities. A description of each report (table) is included.

AOI Inventory

This folder contains a collection of tabular reports that present a variety of soil information. Included are various map unit description reports, special soil interpretation reports, and data summary reports.

Legend

This report presents general information about the map units in the selected area. It shows map unit symbols and names for each map unit.

Report—Legend

Legend–Rockingham County, New Hampshire				
Map unit symbol and name	Map unit acres			
43B—Canton fine sandy loam, 0 to 8 percent slopes, very stony	9,274			
447B—Scituate-Newfields complex, 3 to 8 percent slopes, very stony	15,406			
547B—Walpole very fine sandy loam, 3 to 8 percent slopes, very stony	9,882			

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Test Pit Report

For

Unitil Corporation

24 Towle Road,

Kingston, NH

Prepared For

Unitil Corporation

20025.00

PREPARED BY

TFMoran, Inc.

48 Constitution Drive

Bedford, NH 03110

April 20th, 2023

Test Pit # 1 April 13th, 2023

0 – 8" 10YR 3/3 Dark Brown, Sandy Loam, Massive, Friable, Homogenous, Organic Horizon

8 – 24" 10YR 5/6 Yellowish Brown, Fine Loamy Sand, Massive, Very Friable, Few Gravels

24 – 31" 10YR 6/6 Brownish Yellow, Fine Sand, Single Grained, Very Friable, Homogenous, Few Stones, Red**ox**imorphic Features Present (10R 4/6 Red)

31 – 50" 10YR 3/2 Very Dark Grayish Brown, Coarse Sand, Single Grained, Loose, Many Stones, Many Gravels, Heterogenous, Red**ox**imorphic Features Present (7.5R 3/6 Dark Red)

REDOX OBS: Common @ 30" Below Grade (10R 4/6 Red)

Soil Series: Scituate

OBSWT: 50" Below Grade

ESHWT: 30" Below Grade

Roots: Many 17" Below Grade

Ledge: 50" +

Test Pit # 2 April 13th, 2023

0 – 5" 10YR 2/1 Black, Loam, Massive, Friable, Many roots, Few Gravels, Organic Horizon

5 – 26" 10YR 5/6 Yellowish Brown, Sandy Loam, Massive, Friable, Many Stones, Many Gravels, Homogenous, Enriched in Iron (Fe), Saturated, Redoximorphic Features Present (10R 3/6 Dark Red)

26 – 37" 10YR 3/2 Very Dark Grayish Brown, Coarse Sand, Single Grained, Very Friable, Many Stones, Many Boulders, Heterogenous, Saturated, Red**ox**imorphic Features Present (7.5R 3/6 Dark Red)

REDOX OBS: Few @ 18" Below Grade (10R 3/6 Dark Red)

Soil Series: Scituate

OBSWT: 37" Below Grade

ESHWT: 18" Below Grade

Roots: Common 5" Below Grade

Ledge: 37" +

Test Pit # 3 April 13th, 2023

0 – 10" 10YR 3/4 Dark Yellowish Brown, Loam, Massive, Friable, Many Roots, Organic Horizon

10 – 26" 10YR 5/8 Yellowish Brown, Sandy Loam, Massive, Friable, Many Gravels, Many Stones

26 – 36" 10YR 4/6 Dark Yellowish Brown, Coarse Loamy Sand, Massive, Firm, Many Gravels, Many Stones

36 – 54" 10R 4/6 Dark Yellowish Brown, Coarse Sand, Single Grained, Loose, Many Stones, Many Gravels, Heterogenous, Saturated, Red**ox**imorphic Features Present (7.5R 3/6 Dark Red)

REDOX OBS: Common @ 36" Below Grade (7.5R 3/6 Dark Red)

Soil Series: Scituate

OBSWT: 54" Below Grade

ESHWT: 36" Below Grade

Roots: Many 19" Below Grade

Ledge: 54" +

Test Pit # 4 April 13th, 2023

0–7" 10YR 3/3 Dark Brown, Loam, Massive, Very Friable, Many Fine Roots, Homogenous

7 – 25" 10YR 4/6 Dark Yellowish Brown, Sandy Loam, Massive, Friable, Common Rocks, Homogenous

25 – 29" 10YR 5/4 Yellowish Brown, Fine Sand, Single Grained, Very Friable, Homogenous

29 – 43" 10YR 4/6 Dark Yellowish Brown, Coarse Sand, Single Grained, Loose,
Many Gravels, Common Stones, Saturated, Heterogenous, Redoximorphic
Features Present (7.5R 3/6 Dark Red)

REDOX OBS: Many @ 36" Below Grade (7.5R 3/6 Dark Red)

Soil Series: Scituate

OBSWT: 43" Below Grade

ESHWT: 36" Below Grade

Roots: Many Fine 7" Below Grade

Ledge: 43" +

Test Pit # 5 April 18th, 2023

0–6" 10YR 2/1 Black, Loam, Massive, Very Friable, Heavy Duff, Many Roots, Homogenous, Organic Horizon

6 – 13" 10YR 4/4 Dark Yellowish Brown, Sandy Loam, Massive, Friable, Enriched in Iron (Fe), Few Gravels, Few Stones, Homogenous

13 – 26" 10YR 4/6 Dark Yellowish Brown, Loamy Sand, Massive, Slightly Firm, Super Saturated, Many Stones, Redoximorphic Features Present (10R 4/6 Red)

REDOX OBS: Common @ 21" Below Grade (10R 4/6 Red)

Soil Series: Scituate

OBSWT: 22" Below Grade

ESHWT: 21" Below Grade

Roots: Many 13" Below Grade

Ledge: 26" +

Test Pit # 6 April 18th, 2023

0–6" 10YR 2/1 Black, Muck, Massive, Friable, Super Saturated, **Red**oximorphic Features Present (10YR 7/8 Yellow), Odorless

REDOX OBS: Common @ 4" Below Grade (Yellow 10YR 7/8)

Soil Series: Walpole

OBSWT: 6" Below Grade

ESHWT: 4" Below Grade

Roots: Many 2" Below Grade

Ledge: 6" +

Test Pit # 7 April 13th, 2023

0–9" 10YR 3/3 Dark Brown, Loam, Massive, Very Friable, Many Roots, Homogenous

9 – 20" 10YR 4/6 Dark Yellowish Brown, Sandy Loam, Massive, Friable, Few Stones, Homogenous

20 – 24" 10YR 4/6 Dark Yellowish Brown, Fine Sand, Single Grained, Friable, Few Gravels, Heterogenous

24 – 33" 10YR 3/6 Dark Yellowish Brown, Silt Loam Massive, Very Firm, Homogenous, Red**ox**imorphic Features Present (10R 4/6 Red)

33 – 42" 10YR 4/6 Dark Yellowish Brown, Coarse Sand, Single Grained, Loose, Many Gravels, Many Stones, Heterogenous, Saturated, Redoximorphic Features Present (7.5R 3/6 Dark Red)

REDOX OBS: Common @ 29" Below Grade (10R 4/6 Red)

Soil Series: Scituate

OBSWT: 42" Below Grade

ESHWT: 29" Below Grade

Roots: Common 15" Below Grade

Ledge: 42" +

Test Pit # 8 April 13th, 2023

0 –12" 10YR 2/2 Very Dark Brown, Loam, Massive, Friable, Few Roots, Homogenous

12 – 25" 10YR 3/6 Dark Yellowish Brown, Sandy Loam, Massive, Friable, Enriched in Iron (Fe), Many Gravels, Many Stones Homogenous

25 – 36" 10YR 4/6 Dark Yellowish Brown, Coarse Sand, Single Grained, Loose,
Many Gravels, Very Few Stones, Saturated, Redoximorphic Features Present (7.5R
3/6 Dark Red)

REDOX OBS: Many @ 28" Below Grade 7.5R 3/6 Dark Red)

Soil Series: Scituate

OBSWT: 36" Below Grade

ESHWT: 28" Below Grade

Roots: Few 8" Below Grade

Ledge: 43" +

Test Pit # 9 April 13th, 2023

0–9" 10YR 2/1 Black, Loam, Massive, Very Friable, High Organics Concentration, Homogenous

9 – 11" 10YR 3/3 Dark Brown, Sandy Loam, Massive, Friable, Homogenous

11 – 31" 10YR 5/8 Yellowish Brown, Fine Sand, Single Grained, Very Friable, Heterogenous

31 – 40" 10YR 4/6 Dark Yellowish Brown, Coarse Sand, Single Grained, Loose,
Many Cobbles, Many Stones, Saturated, Redoximorphic Features Present (7.5R
3/6 Dark Red), Heterogenous

REDOX OBS: Many @ 32" Below Grade 7.5R 3/6 Dark Red)

Soil Series: Windsor

OBSWT: 40" Below Grade

ESHWT: 32" Below Grade

Roots: Few 6" Below Grade

Ledge: 40" +

NOTE: Material at depth greater than 40" was found to be Very Fine Sand 10YR 7/2. Start Point Unknown.

Amoozemeter Field Data Sheet

DATE: April 13 th , 2023		Project: 20025-00 Unitil Utility Scale PV				
LOCATION: 24 Towle Road, Kingston	, NH 03848	AIR TEMPERATURE: 86°F				
TEST BY: Paul H. O'Hanlon						
SOIL MAP Symbol: 9cpd (NRCS)	NO	TES:				
HORIZON: B-Horizon (Native Material)			Test conducted at 20" below existing grade			
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils o	n Site					
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	21.34 cm		24.38 cm		24.38 cm	
H - DEPTH OF H20 IN HOLE	0 cm		0 cm		0 cm	
Coefficient A	Too Fast to Measur	e Too Fast to Meas		e To	o Fast to Measure	

Sample Set 1	Coefficient A =	#N/A					
48.00	0.5	0.008333	105	604800		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
					Average	Too Fast To	Measure
					Stand Dev	N/A	N/A
Sample Set 2	Coefficient A =	#N/A					
48.00	0.5	0.008333	105	604800		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
					Average	Too Fast To	Measure
					Stand Dev	N/A	N/A
Sample Set 3	Coefficient A =	#N/A					
48.00	0.5	0.008333	105	604800		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
0.00	0.5	0.008333	105	0		#N/A	#N/A
					Average	Too Fast To	Measure
					Stand Dev	N/A	N/A

Amoozemeter Field Data Sheet

DATE: April 13 th , 2023		Project: 20025-00 Unitil Utility Scale PV				
LOCATION: 24 Towle Road, Kingston	, NH 03848	AIR	TEMPERATURE:	86°F		
TEST BY: Paul H. O'Hanlon						
SOIL MAP Symbol: 9cpd (NRCS)		NO	TES:			
HORIZON: B-Horizon (Native Material)			Test conducted at 12" below existing grade			
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils o	n Site					
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	24.38 cm		24.38 cm	24.38 cm		
H - DEPTH OF H20 IN HOLE	18.29 cm		18.29 cm	18.29 cm		
Coefficient A	.000691		.000691	.000691		

Sample Set 1 Coef	ficient A =	0.000691					
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
0.70	0.5	0.008333	105	8820		6.09666	2.40026085
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
					Average	5.74828	2.26310
					Stand Dev	0.779002966	0.30669408
Sample Set 2 Coef	ficient A =	0.000691					
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.10	0.5	0.008333	105	13860		9.58047	3.77183847
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.10	0.5	0.008333	105	13860		9.58047	3.77183847
					Average	8.70952	3.42894
					Stand Dev	1.06669	0.41995817
Sample Set 3 Coef	ficient A =	0.000691					
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
1.10	0.5	0.008333	105	13860		9.58047	3.77183847
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
					Average	9.75466	3.84042
					Stand Dev	1.135582205	0.44707961

Amoozemeter Field Data Sheet

DATE: April 13 th , 2023		Project: 20025-00 Unitil Utility Scale PV				
LOCATION: 24 Towle Road, Kingston	, NH 03848	AIR TEMPERATURE: 86°F				
TEST BY: Paul H. O'Hanlon						
SOIL MAP Symbol: 9cnr (NRCS)	NO	TES:				
HORIZON: B-Horizon (Native Material)			Test conducted at 16" below existing grade			
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils o	n Site					
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	24.38 cm		24.38 cm		24.38 cm	
H - DEPTH OF H20 IN HOLE	18.29 cm		0 cm		0	cm
Coefficient A	.000691	Too Fast To Me		e Too Fast To Measu		o Measure

Sample Set 1	Coefficient A =	•	0.000691					
13.50		0.5	0.008333	105	170100		117.57849	46.2907449
10.00		0.5	0.008333	105	126000		87.09518	34.2894407
9.00		0.5	0.008333	105	113400		78.38566	30.8604966
6.50		0.5	0.008333	105	81900		56.61187	22.2881364
8.30		0.5	0.008333	105	104580		72.28900	28.4602358
						Average	Too Fast To N	leasure
						Stand Dev	N/A	N/A
Sample Set 2	Coefficient A =		0.000000					
48.00		0.5	0.008333	105	604800		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
						Average	Too Fast To N	leasure
						Stand Dev	N/A	N/A
Sample Set 3	Coefficient A =		0.000000					
48.00		0.5	0.008333	105	604800		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
0.00		0.5	0.008333	105	0		0.00000	0
						Average	Too Fast To N	leasure
						Stand Dev	N/A	N/A

Amoozemeter Field Data Sheet

DATE: April 13 th , 2023		Project: 20025-00 Unitil Utility Scale PV			
LOCATION: 24 Towle Road, Kingston	, NH 03848	AIR TEMPERATURE:	86°F		
TEST BY: Paul H. O'Hanlon					
SOIL MAP Symbol: 9cnr (NRCS)		NOTES:			
HORIZON: B-Horizon (Native Materi	al)	Test conducted at 18" below existing grade			
DISTURBED SITE: N/A Site in Native	Condition				
SOIL LOG RECORDED: Natural Soils of	n Site				
SETUP CALCULATIONS	Sample Round 1				
D- Bottom of Hole to Ref line	33.53 cm	33.53 cm	33.53 cm		
H - DEPTH OF H20 IN HOLE	30.48 cm	30.48 cm	30.48 cm		
Coefficient A	.000325	.000325	.000325		

Sample Set 1 Coeffi	cient A =	0.000325					
5.30	0.5	0.008333	105	66780		21.69307	8.54058064
7.70	0.5	0.008333	105	97020		31.51635	12.4080134
6.00	0.5	0.008333	105	75600		24.55820	9.66858186
4.00	0.5	0.008333	105	50400		16.37213	6.44572124
5.00	0.5	0.008333	105	63000		20.46516	8.05715155
					Average	22.92098	9.02401
					Stand Dev	5.634428236	2.21827883
Sample Set 2 Coeffi	icient A =	0.000325					
3.90	0.5	0.008333	105	49140		15.96283	6.28457821
5.60	0.5	0.008333	105	70560		22.92098	9.02400973
4.80	0.5	0.008333	105	60480		19.64656	7.73486549
5.60	0.5	0.008333	105	70560		22.92098	9.02400973
3.80	0.5	0.008333	105	47880		15.55353	6.12343518
					Average	19.40098	7.63818
					Stand Dev	3.58695	1.41218677
Sample Set 3 Coeffi	cient A =	0.000325					
2.80	0.5	0.008333	105	35280		11.46049	4.51200487
3.70	0.5	0.008333	105	46620		15.14422	5.96229214
3.10	0.5	0.008333	105	39060		12.68840	4.99543396
3.20	0.5	0.008333	105	40320		13.09771	5.15657699
2.80	0.5	0.008333	105	35280		11.46049	4.51200487
					Average	12.77026	5.02766
					Stand Dev	1.514975216	0.59644694

Amoozemeter Field Data Sheet

DATE: April 18 th , 2023		Project: 20025-00 Unitil Utility Scale PV				
LOCATION: 24 Towle Road, Kingston, NH 03848			R TEMPERATURE:	65°F		
TEST BY: Paul H. O'Hanlon					•	
SOIL MAP Symbol: 2w81l (NRCS)			TES:			
HORIZON: A-Horizon (Native Material)			Test conducted at grade			
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils o	n Site					
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	30.48 cm		30.48 cm		30.48 cm	
H - DEPTH OF H20 IN HOLE	24.38 cm		18.29 cm		18.29 cm	
Coefficient A	.000454		.000691		.000691	

Sample Set 1 Coef	ficient A =	0.000454					
3.00	0.5	0.008333	105	37800		17.17765	6.76285305
2.50	0.5	0.008333	105	31500		14.31471	5.63571088
1.80	0.5	0.008333	105	22680		10.30659	4.05771183
2.80	0.5	0.008333	105	35280		16.03247	6.31199618
2.40	0.5	0.008333	105	30240		13.74212	5.41028244
					Average	14.31471	5.63571
					Stand Dev	3.45139793	1.35881808
Sample Set 2 Coef	ficient A =	0.000691					
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
					Average	8.01276	3.15463
					Stand Dev	0.00000	0
Sample Set 3 Coef	ficient A =	0.000691					
1.40	0.5	0.008333	105	17640		12.19333	4.80052169
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
					Average	9.75466	3.84042
					Stand Dev	1.986075662	0.78191955

Amoozemeter Field Data Sheet

DATE: April 18 th , 2023		Project: 20025-00 Unitil Utility Scale PV				
LOCATION: 24 Towle Road, Kingston	ON: 24 Towle Road, Kingston, NH 03848			65°F		
TEST BY: Paul H. O'Hanlon					1	
SOIL MAP Symbol: 2w81l (NRCS)			TES:			
HORIZON: O-Horizon (Native Material)			Test was not conducted due to the elevation of the observed water table (6 inches below grade).			
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils o	n Site	1				
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	N/A	N/A			N/A	
H - DEPTH OF H20 IN HOLE	N/A	N/A			N/A	
Coefficient A	N/A		N/A		N/A	

Sample Set 1	Coefficient A =	#N/A					
48.00	0.5	0.008333	106	610560		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
					Average	Observed @	6" Below Grade
					Stand Dev	N/A	N/A
Sample Set 2	Coefficient A =	#N/A					
48.00	0.5	0.008333	106	610560		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
					Average	Observed @	6" Below Grade
					Stand Dev	N/A	N/A
Sample Set 3	Coefficient A =	#N/A					
48.00	0.5	0.008333	106	610560		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
					Average	Observed @	6" Below Grade
					Stand Dev	N/A	N/A

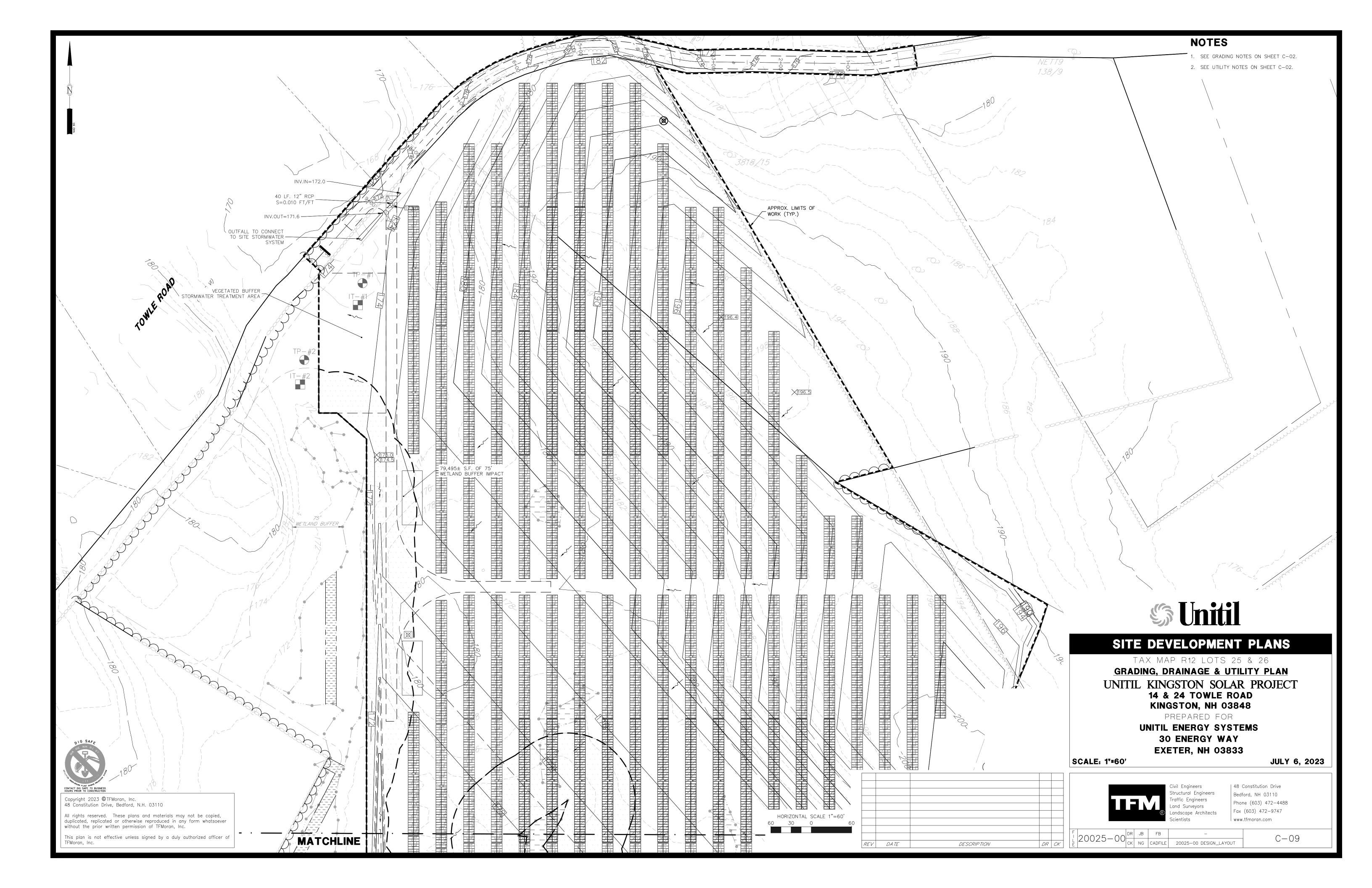
Amoozemeter Field Data Sheet

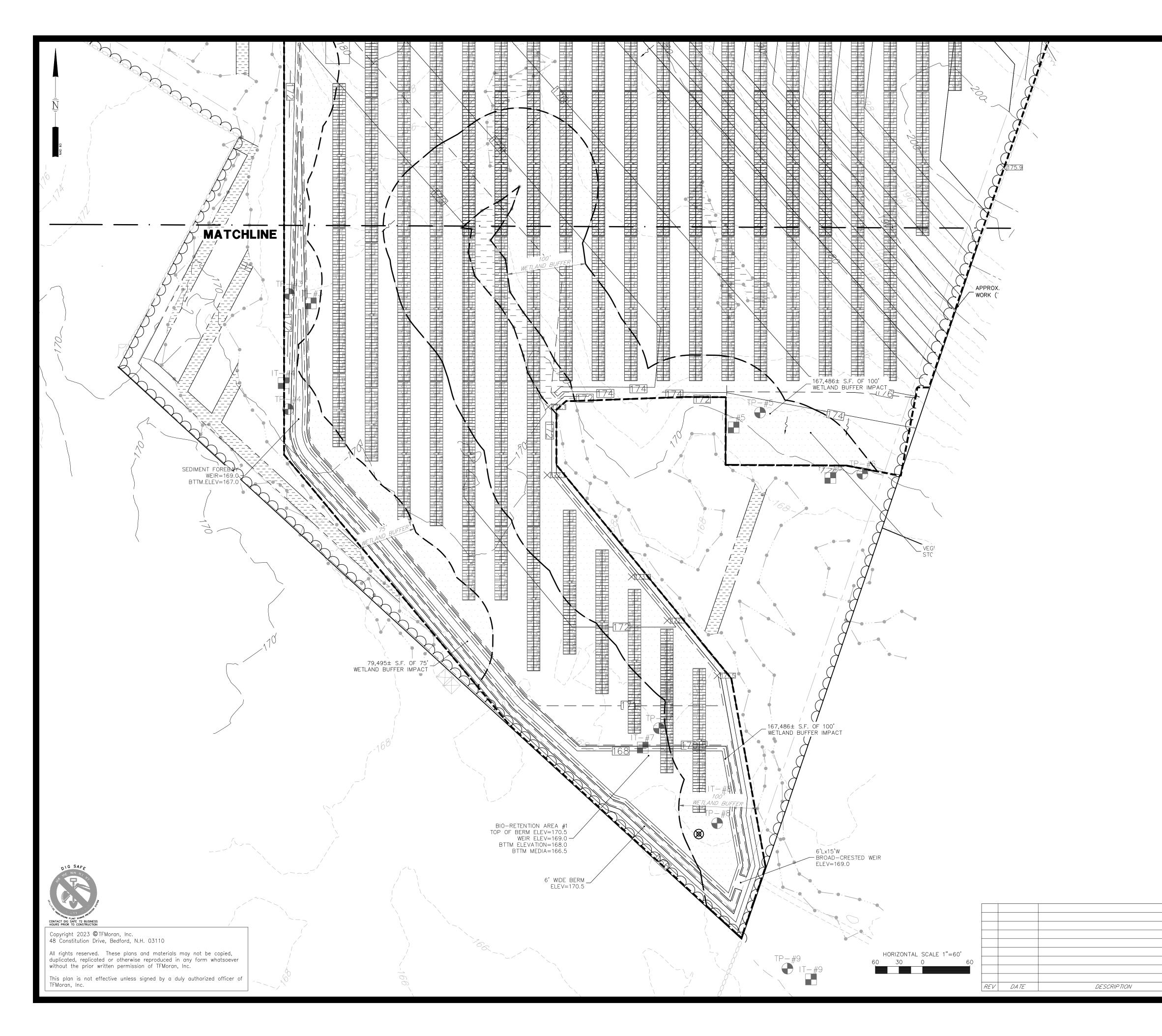
DATE: April 13 th , 2023		Project: 20025-00 Unitil Utility Scale PV		
LOCATION: 24 Towle Road, Kingston	, NH 03848	AIR TEMPERATURE:	65°F	
TEST BY: Paul H. O'Hanlon				
SOIL MAP Symbol: 9cpd (NRCS)		NOTES:		
HORIZON: B-Horizon (Native Materi	al)	Test conducted at 14" below existing grade		
DISTURBED SITE: N/A Site in Native	Condition			
SOIL LOG RECORDED: Natural Soils o	n Site			
SETUP CALCULATIONS	Sample Round 1			
D- Bottom of Hole to Ref line	21.34 cm	24.38 cm	21.34 cm	
H - DEPTH OF H20 IN HOLE	18.29 cm	18.29 cm	18.29 cm	
Coefficient A	0.000691	0.000691	0.000691	

Sample Set 1 Coef	fficient A =	0.000691					
1.40	0.5	0.008333	105	17640		12.19333	4.80052169
1.20	0.5	0.008333	105	15120		10.45142	4.11473288
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.10	0.5	0.008333	105	13860		9.58047	3.77183847
1.10	0.5	0.008333	105	13860		9.58047	3.77183847
					Average	10.10304	3.97758
					Stand Dev	1.320863793	0.52002512
Sample Set 2 Coef	fficient A =	0.000691					
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
1.00	0.5	0.008333	105	12600		8.70952	3.42894407
					Average	8.53533	3.36037
					Stand Dev	0.38950	0.15334704
Sample Set 3 Coef	fficient A =	0.000691					
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
0.70	0.5	0.008333	105	8820		6.09666	2.40026085
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
0.80	0.5	0.008333	105	10080		6.96761	2.74315525
0.90	0.5	0.008333	105	11340		7.83857	3.08604966
					Average	7.14180	2.81173
					Stand Dev	0.72869055	0.28688604

Amoozemeter Field Data Sheet

DATE: April 13 th , 2023	Project: 20025-00 Unitil Utility Scale PV			
LOCATION: 24 Towle Road, Kingston	AIR TEMPERATURE	: 65°F		
TEST BY: Paul H. O'Hanlon				
SOIL MAP Symbol: 9cpd (NRCS)		NOTES:		
HORIZON: B-Horizon (Native Materi	al)	Test conducted at 13" below existing grade		
DISTURBED SITE: N/A Site in Native				
SOIL LOG RECORDED: Natural Soils of	n Site			
SETUP CALCULATIONS	Sample Round 1			
D- Bottom of Hole to Ref line	21.34 cm	21.34	· cm	21.34 cm
H - DEPTH OF H20 IN HOLE	18.29 cm	18.29	cm	18.29 cm
Coefficient A	0.000691	0.000	691	0.000691


Sample Set 1 Coef	ficient A =	0.000691					
0.50	0.5	0.008333	105	6300		4.35476	1.71447203
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
					Average	3.65800	1.44016
					Stand Dev	0.389501483	0.15334704
Sample Set 2 Coef	ficient A =	0.000000					
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
0.50	0.5	0.008333	105	6300		4.35476	1.71447203
0.40	0.5	0.008333	105	5040		3.48381	1.37157763
					Average	3.65800	1.44016
					Stand Dev	0.38950	0.15334704
Sample Set 3 Coef	ficient A =	0.000691					
0.20	0.5	0.008333	105	2520		1.74190	0.68578881
0.30	0.5	0.008333	105	3780		2.61286	1.02868322
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
0.60	0.5	0.008333	105	7560		5.22571	2.05736644
					Average	4.00638	1.57731
					Stand Dev	1.697797602	0.66842425



Amoozemeter Field Data Sheet

DATE: April 13 th , 2023			Project: 20025-00 Unitil Utility Scale PV			
LOCATION: 24 Towle Road, Kingston,	LOCATION: 24 Towle Road, Kingston, NH 03848			86°F		
TEST BY: Paul H. O'Hanlon				1		
SOIL MAP Symbol: 9cpd (NRCS)		NO	TES:			
HORIZON: B-Horizon (Native Materia	l)	Test conducted at 12" below existing grade				
DISTURBED SITE: N/A Site in Native Condition						
SOIL LOG RECORDED: Natural Soils or	n Site	1				
SETUP CALCULATIONS	Sample Round 1					
D- Bottom of Hole to Ref line	21.34 cm		21.34 cm		21.3	34 cm
H - DEPTH OF H20 IN HOLE	0 cm		0 cm		0	cm
Coefficient A	Too Fast to Measure		Too Fast to Measure	e	Too Fast	to Measure

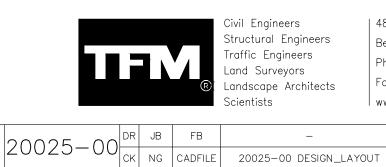
Sample Set 1 Coef	ficient A =	#N/A					
48.00	0.5	0.008333	106	610560		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
0.00	0.5	0.008333	106	0		#N/A	#N/A
					Average	Too Fast To N	leasure
					Stand Dev	N/A	N/A
Sample Set 2 Coef	ficient A =	0.000000					
48.00	0.5	0.008333	106	610560		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
					Average	Too Fast To N	leasure
					Stand Dev	N/A	N/A
Sample Set 3 Coef	ficient A =	0.000000					
48.00	0.5	0.008333	106	610560		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
0.00	0.5	0.008333	106	0		0.00000	0
					Average	Too Fast To N	leasure
					Stand Dev	N/A	N/A

NOTES

- 1. SEE GRADING NOTES ON SHEET C-02.
- 2. SEE UTILITY NOTES ON SHEET C-02.

SOIL LEGEND (PER SITE SPECIFIC SOIL SURVEY)				
SYMBOL	DESCRIPTION HYDROLOGIC SOIL GI			
42	CANTON WELL DRAINED	В		
448	SCITUATE MODERATELY WELL DRAINED	С		
921	NEWFIELDS SOMEWHAT POORLY DRAINED	В		
546B/P	WALPPOLE POORLY DRAINED	С		
115/VP	SCARBORO VERY POORLY DRAINED	D		

SITE DEVELOPMENT PLANS TAX MAP R12 LOTS 25 & 26


GRADING, DRAINAGE & UTILITY PLAN UNITIL KINGSTON SOLAR PROJECT 14 & 24 TOWLE ROAD KINGSTON, NH 03848 PREPARED FOR UNITIL ENERGY SYSTEMS **30 ENERGY WAY**

EXETER, NH 03833

SCALE: 1"=60'

JULY 6, 2023

DR CK

Structural Engineers Traffic Engineers Land Surveyors Landscape Architects

C-10

48 Constitution Drive

Bedford, NH 03110

Fax (603) 472-9747

www.tfmoran.com

Phone (603) 472-4488

PART 8

Inspection & Maintenance Manual

Unitil Kingston Solar Project Tax Map R12, Lots 25 & 26 14 & 24 Towle Road, Kingston, NH 03848 July 6, 2023

Revised: September 1, 2023

Table of Contents

Description of Project

Responsible Party

Stormwater Practices – Schedule of Maintenance

Stormwater Practices – Maintenance Guidelines

- Treatment Practice
 - Bio-Retention Area
 - Vegetative Buffers
- Pretreatment Practices
 - Sediment Forebay
- Conveyance Practices
 - Grass Swale
- System Components
- Invasive Species

Control of Invasive Plants

Inspection & Maintenance Log

Inspection Checklist and Inspection & Maintenance Plan

The proposed project is to construct a utility scale photovoltaic generating (PV) facility along with associated amenities such as a gravel access drive, storage for equipment, a fence line, and stormwater management. The proposed area of work is located to at 14 & 24 Towle Road, west of the existing Eversource Peaslee and Unitil Kingston Substations within the Rural Residential District.

The site is wooded and undeveloped, except for signs of prior logging operations. The existing topography property consists of approximately 30 feet of grade change (200 feet to 170 feet), descending from the adjacent utility corridor in the northeast to the wetland complex in the southern portions of the property. Access to the parcel is via the class IV portion of Towle Road. Photos of existing features can be found in Section 2 of this Report.

The placement of the solar array was arranged to mitigate impacts on the valuable wetland located on the southern end of the site. The stormwater system was also designed to compensate for the three impacted wetlands.

Proposed and existing open and closed drainage systems will convey, attenuate, and provide treatment/groundwater recharge of stormwater associated with the development. The majority of the site will drain to the southeast of the site though one (1) proposed Bio-Retention Area, while the northwest and southeast portions of the on the site will discharge though two (2) Vegetated Buffer Areas.

All vegetation within limits of solar facility (within fencing) shall be maintain 85% coverage of vegetation in good condition and repair areas of erosion.

Responsible Party

Owner: Unitil Energy Systems, Inc. (c/o Jacob Dusling, P.E,)*

Address: 30 Energy Way, Exeter, NH 03833

Phone: (603) 773-6529

Email: dusling@unitil.com

*Responsibility shall be conveyed to any future owners, heirs, or assigns

Stormwater Practices – Schedule of Maintenance

The following practices shall be inspected twice annually, once following snowmelt (spring), and once following leaf-drop (fall):

- Bio-retention Area
- Sediment Forebays
- Vegetative Buffer

The following practices shall be inspected annually following snowmelt (spring):

• Grass Swale

Treatment Practices

(Inspected twice a year)

Bio-retention Area

Maintenance Requirements:

- Systems should be inspected at least twice a year, and following any rainfall event exceeding 2.5 inches in a 24-hour period, with maintenance or rehabilitation conducted as warranted by such inspection
- Pretreatment measures should be inspected at least twice annually, and cleaned of accumulated sediment as warranted by inspection, but no less than once annually.
- Trash and debris should be removed at each inspection.
- At least once annually, the system should be inspected for drawdown time. If a bioretention system does not drain within 72-hours following a rainfall event, then a qualified professional should assess the condition of the facility to determine measures required to restore filtration function or infiltration function (as applicable), including but not limited to removal of accumulated sediments or reconstruction of the filter media.
- Vegetation should be inspected at least annually, and maintained in healthy condition, including pruning, removal, and replacement of dead or diseased vegetation, and removal of invasive species.

Vegetated Buffer (for a Small Pervious Area)

Maintenance Requirements:

- Inspect buffer at least annually for signs of erosion, sediment buildup, or vegetation loss.
- If a meadow buffer, provide periodic mowing as needed to maintain a healthy stand of herbaceous vegetation.
- If a forested buffer, then the buffer should be maintained in an undisturbed condition, unless erosion occurs.
- If erosion of the buffer (forested or meadow) occurs, eroded areas should be repaired and replanted with vegetation similar to the remaining buffer. Corrective action should include eliminating the source of the erosion problem and may require retrofit with a level spreader.
- Remove debris and accumulated sediment, based on inspection.

Pretreatment Practices

(Inspected twice a year)

Sediment Forebay

Maintenance Requirements:

- To be inspected at least twice annually, once following snowmelt, and once following leaf-drop and cleaned as indicated by inspection;
- Conduct periodic mowing of embankments (two times per year) to control grown of woody vegetation on embankments;
- Remove debris from outlet structure;
- Remove and dispose of accumulated sediment; and
- Install and maintain a staff gage or other measuring device to indicate depth of sediment accumulation and level at which clean-out is required. It shall be cleaned out when sediment fills half the sump depth (minimum sump depth is 2 feet when clear).

Conveyance Practices

(Inspections As Noted)

Grass Swale

Maintenance Requirements:

- Grassed channels should be inspected annually for sediment accumulation, erosion, and condition of surface lining.
- Repairs, including vegetation replacement, should be made based on inspection.
- Remove sediment and debris annually, or more frequently as warranted by inspection.
- Mow vegetated channels at least once a year to control establishment of woody vegetation. It is recommended to cut grass no shorter than 4 inches.

System Components

Invasive Species

Maintenance Requirements:

- If any invasive species grow on-site, they shall be killed using spray herbicide
- Responsible Party should contact a local nursery to determine the best alternative for removing the invasive species.

Control of Invasive Plans

During maintenance activities, check for the presence of invasive plants. If invasive plants are found, they shall be controlled and removed in a safe manner as described on the following pages.

Invasive plants are introduced, alien, or non-native plants, which have been moved by people from their native habitat to a new area. Some exotic plants are imported for human use such as landscaping, erosion control or food crops. They also can arrive as "hitchhikers" among shipments of other plants, seeds, packing materials or fresh produce. Invasive plants can cause harm by:

- Becoming weedy and overgrown;
- Killing established shade trees;
- Obstructing pipes and drainage systems
- Forming dense beds in water
- Lowering water levels in lakes, streams, and wetlands
- Destroying natural communities
- Promoting erosion on stream banks and hillsides
- Resisting control except by hazardous chemicals.

UNIVERSITY of NEW HAMPSHIRE Methods for Disposing COOPERATIVE EXTENSION Non-Native Invasive Plants

Prepared by the Invasives Species Outreach Group, volunteers interested in helping people control invasive plants. Assistance provided by the Piscataquog Land Conservancy and the NH Invasives Species Committee. Edited by Karen Bennett, Extension Forestry Professor and Specialist.

 Tatarian honeysuckle

 Lonicera tatarica

 USDA-NRCS PLANTS Database / Britton, N.L., and

 A. Brown. 1913. An illustrated flora of the northern

 United States, Canada and the British Possessions.

 Vol. 3: 282.

Non-native invasive plants crowd out natives in natural and managed landscapes. They cost taxpayers billions of dollars each year from lost agricultural and forest crops, decreased biodiversity, impacts to natural resources and the environment, and the cost to control and eradicate them.

Invasive plants grow well even in less than desirable conditions such as sandy soils along roadsides, shaded wooded areas, and in wetlands. In ideal conditions, they grow and spread even faster. There are many ways to remove these nonnative invasives, but once removed, care is needed to dispose the removed plant material so the plants don't grow where disposed.

Knowing how a particular plant reproduces indicates its method of spread and helps determine

the appropriate disposal method. Most are spread by seed and are dispersed by wind, water, animals, or people. Some reproduce by vegetative means from pieces of stems or roots forming new plants. Others spread through both seed and vegetative means.

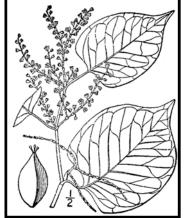
Because movement and disposal of viable plant parts is restricted (see NH Regulations), viable invasive parts can't be brought to most transfer stations in the state. Check with your transfer station to see if there is an approved, designated area for invasives disposal. This fact sheet gives recommendations for rendering plant parts nonviable.

Control of invasives is beyond the scope of this fact sheet. For information about control visit <u>www.nhinvasives.org</u> or contact your UNH Cooperative Extension office.

New Hampshire Regulations

Prohibited invasive species shall only be disposed of in a manner that renders them nonliving and nonviable. (Agr. 3802.04)

No person shall collect, transport, import, export, move, buy, sell, distribute, propagate or transplant any living and viable portion of any plant species, which includes all of their cultivars and varieties, listed in Table 3800.1 of the New Hampshire prohibited invasive species list. (Agr 3802.01)


How and When to Dispose of Invasives?

To prevent seed from spreading remove invasive plants before seeds are set (produced). Some plants continue to grow, flower and set seed even after pulling or cutting. Seeds can remain viable in the ground for many years. If the plant has flowers or seeds, place the flowers and seeds in a heavy plastic bag "head first" at the weeding site and transport to the disposal site. The following are general descriptions of disposal methods. See the chart for recommendations by species.

Burning: Large woody branches and trunks can be used as firewood or burned in piles. For outside burning, a written fire permit from the local forest fire warden is required unless the ground is covered in snow. Brush larger than 5 inches in diameter can't be burned. Invasive plants with easily airborne seeds like black swallow-wort with mature seed pods (indicated by their brown color) shouldn't be burned as the seeds may disperse by the hot air created by the fire.

Bagging (solarization): Use this technique with softertissue plants. Use heavy black or clear plastic bags (contractor grade), making sure that no parts of the plants poke through. Allow the bags to sit in the sun for several weeks and on dark pavement for the best effect.

Tarping and Drying: Pile material on a sheet of plastic

Japanese knotweed Polygonum cuspidatum USDA-NRCS PLANTS Database / Britton, N.L., and A. Brown. 1913. An illustrated flora of the northern United States, Canada and the British Possessions. Vol. 1: 676.

and cover with a tarp, fastening the tarp to the ground and monitoring it for escapes. Let the material dry for several weeks, or until it is clearly nonviable.

Chipping: Use this method for woody plants that don't reproduce vegetatively.

Burying: This is risky, but can be done with watchful diligence. Lay thick plastic in a deep pit before placing the cut up plant material in the hole. Place the material away from the edge of the plastic before covering it with more heavy plastic. Eliminate as much air as possible and toss in soil to weight down the material in the pit. Note that the top of the buried material should be at least three feet underground. Japanese knotweed should be at least 5 feet underground!

Drowning: Fill a large barrel with water and place soft-tissue plants in the water. Check after a few weeks and look for rotted plant material (roots, stems, leaves, flowers). Well-rotted plant material may be composted. A word of caution- seeds may still be viable after using this method. Do this before seeds are set. This method isn't used often. Be prepared for an awful stink!

Composting: Invasive plants can take root in compost. Don't compost any invasives unless you know there is no viable (living) plant material left. Use one of the above techniques (bagging, tarping, drying, chipping, or drowning) to render the plants nonviable before composting. Closely examine the plant before composting and avoid composting seeds.

Be diligent looking for seedlings for *years* in areas where removal and disposal took place.

Suggested Disposal Methods for Non-Native Invasive Plants

This table provides information concerning the disposal of removed invasive plant material. If the infestation is treated with herbicide and left in place, these guidelines don't apply. Don't bring invasives to a local transfer station, unless there is a designated area for their disposal, or they have been rendered non-viable. This listing includes wetland and upland plants from the New Hampshire Prohibited Invasive Species List. The disposal of aquatic plants isn't addressed.

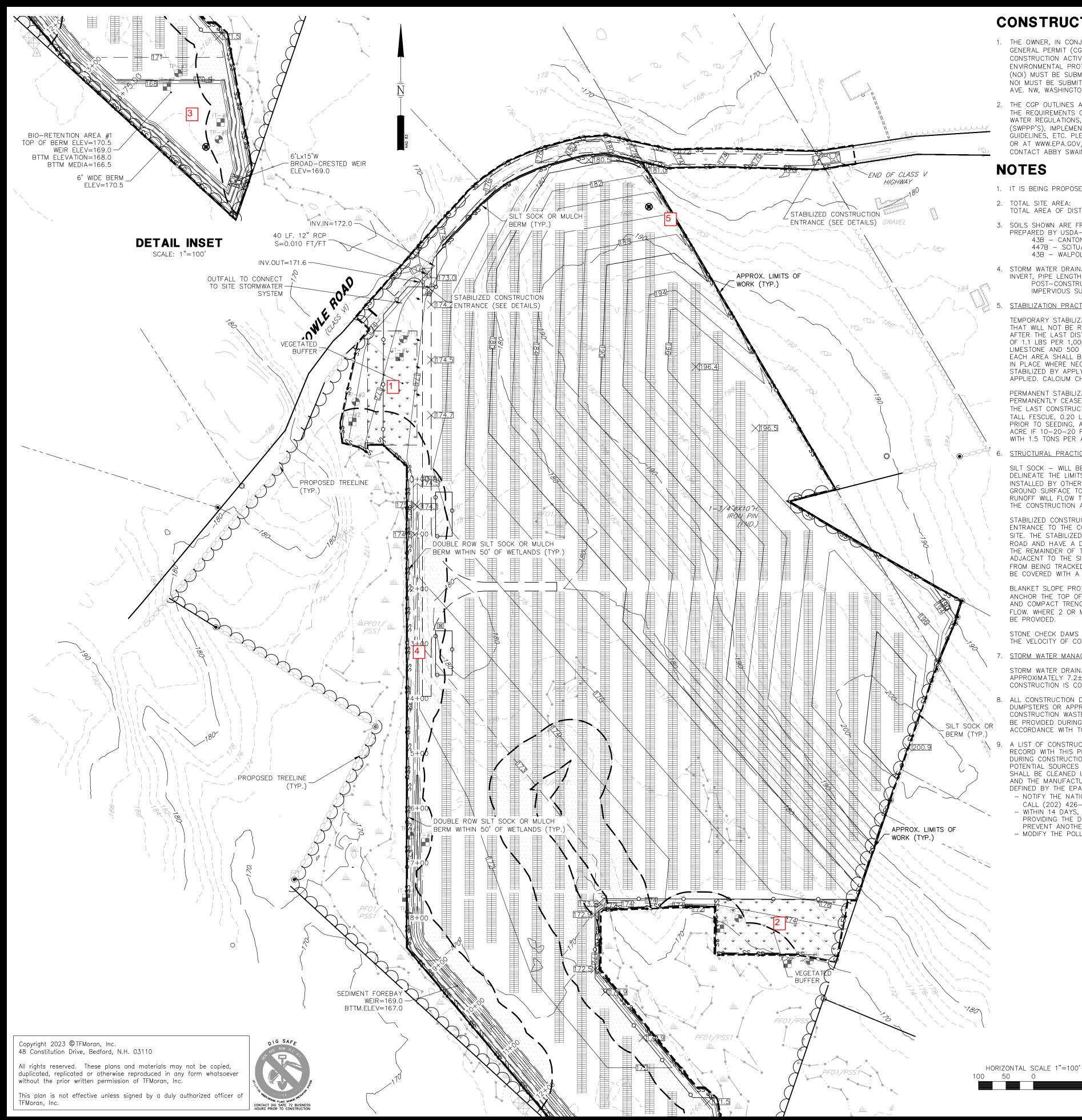
Woody Plants	Method of Reproducing	Methods of Disposal
Norway maple (Acer platanoides) European barberry (Berberis vulgaris) Japanese barberry (Berberis thunbergii) autumn olive (Elaeagnus umbellata) burning bush (Euonymus alatus) Morrow's honeysuckle (Lonicera morrowii) Tatarian honeysuckle (Lonicera tatarica) showy bush honeysuckle (Lonicera x bella) common buckthorn (Rhamnus cathartica) glossy buckthorn (Frangula alnus)	Fruit and Seeds	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Use as firewood. Make a brush pile. Chip. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip once all fruit has dropped from branches. Leave resulting chips on site and monitor.
oriental bittersweet (<i>Celastrus orbiculatus</i>) multiflora rose (<i>Rosa multiflora</i>)	Fruits, Seeds, Plant Fragments	 Prior to fruit/seed ripening Seedlings and small plants Pull or cut and leave on site with roots exposed. No special care needed. Larger plants Make a brush pile. Burn. After fruit/seed is ripe Don't remove from site. Burn. Make a covered brush pile. Chip – only after material has fully dried (1 year) and all fruit has dropped from branches. Leave resulting chips on site and monitor.

Method of Reproducing	Methods of Disposal
Fruits and Seeds	 Prior to flowering Depends on scale of infestation Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile. (You can pile onto or cover with plastic sheeting). Monitor. Remove any re-sprouting material. During and following flowering Do nothing until the following year or remove flowering heads and bag and let rot. Small infestation Pull or cut plant and leave on site with roots exposed. Large infestation Pull or cut plant and pile remaining material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material. (You can pile onto plastic or cover with plastic sheeting). Monitor. Remove any re-sprouting material.
Fruits, Seeds, Plant Fragments Primary means of spread in these species is by plant parts. Although all care should be given to preventing the dispersal of seed during control activities, the presence of seed doesn't materially influence disposal	 Small infestation Bag all plant material and let rot. Never pile and use resulting material as compost. Burn. Large infestation Remove material to unsuitable habitat (dry, hot and sunny or dry and shaded location) and scatter or pile. Monitor and remove any sprouting material. Pile, let dry, and burn.
	Reproducing Fruits and Seeds

January 2010

UNH Cooperative Extension programs and policies are consistent with pertinent Federal and State laws and regulations, and prohibits discrimination in its programs, activities and employment on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sex, sexual orientation, or veteran's, marital or family status. College of Life Sciences and Agriculture, County Governments, NH Dept. of Resources and Economic Development, Division of Forests and Lands, NH Fish and Game ,and U.S. Dept. of Agriculture cooperating.

Date	Inspector	BMPs Inspected	Maintenance Required


Inspection & Maintenance Log

Inspection Checklist

Date:		Project Name:	Unitil Kingston Solar Project Kingston, NH
Inspec	tor's Name/Title:		
Inspec	tor's Contact Information:		
□ 1 st \	Yearly Inspection	BMP's to be ins	spected: All
	Yearly Inspection		spected: Treatment and Pretreatment Practices
BMP* Refer to following Inspection & Maintenance Plan for BMP location		Maintenance Required	Corrective Action Needed and Notes
1	NW Vegetated Buffer Area	□ Yes □ No	
2	SE Vegetated Buffer Area	□ Yes □ No	
3	Bio-Retention Area	□ Yes □ No	
4	Grass Lined Swale	□ Yes □ No	
5	Grass Lined Swale	□ Yes □ No	
6		□ Yes □ No	
7		□ Yes □ No	
8		□ Yes □ No	
9		□ Yes □ No	
10		□ Yes □ No	
11		□ Yes □ No	
12		□ Yes □ No	

*Best Management Practices ** Photographs of BMPs shall be included as part of the required Inspections

***Copies of Inspection & Maintenance Records shall be provided to NHDES AoT Bureau upon request

CONSTRUCTION GENERAL PERMIT

- AVE. NW, WASHINGTON, DC 20460.
- CONTACT ABBY SWAINE OF NEW ENGLAND'S EPA REGION 1 AT 617-918-1841.

NOTES

- 1. IT IS BEING PROPOSED TO CONSTRUCT A SOLAR FACILITY ON THE SUBJECT PARCEL.
- TOTAL AREA OF DISTURBANCE: 29.3± AC
- PREPARED BY USDA-SOIL CONSERVATION SERVICES. 43B - CANTON FINE SANDY LOAM, 0-8% SLOPES, VERY STONY 447B - SCITUATE-NEWFIELDS COMPLEX, 3-8% SLOPES, VERY STONY
- INVERT, PIPE LENGTH, AND SLOPE INFORMATION. POST-CONSTRUCTION RUNOFF COEFFICIENT: C=0.31
- 5. STABILIZATION PRACTICES FOR EROSION AND SEDIMENTATION CONTROLS:

GOOD HOUSEKEEPING: THE FOLLOWING GOOD HOUSEKEEPING PRACTICES WILL BE FOLLOWED ONSITE DURING THE CONSTRUCTION PROJECT. - AN EFFORT WILL BE MADE TO STORE ONLY ENOUGH PRODUCT REQUIRED TO DO THE JOB: - ALL MATERIALS STORED ONSITE WILL BE STORED IN A NEAT, ORDERLY MANNER IN THEIR APPROPRIATE CONTAINERS AND, IF POSSIBLE, UNDER A ROOF OR OTHER ENCLOSURE; - PRODUCTS WILL BE KEPT IN THEIR ORIGINAL CONTAINERS WITH THE ORIGINAL MANUFACTURER'S - SUBSTANCES WILL NOT BE MIXED WITH ONE ANOTHER UNLESS RECOMMENDED BY THE MANUFACTURER: WHENEVER POSSIBLE, ALL OF A PRODUCT WILL BE USED UP BEFORE DISPOSING OF THE CONTAINER; - MANUFACTURERS' RECOMMENDATIONS FOR PROPER USE AND DISPOSAL WILL BE FOLLOWED; - TRASH DUMPSTERS SHALL BE GASKETED OR HAVE A SECURE WATERTIGHT LID AND BE PLACED AWAY FROM STORMWATER CONVEYANCES AND DRAINS. (SWPPP'S), IMPLEMENTATION OF EROSION AND SEDIMENTATION CONTROLS, EQUIPMENT MAINTENANCE - THE SITE SUPERINTENDENT WILL INSPECT DAILY TO ENSURE PROPER USE AND DISPOSAL OF MATERIALS ONSITE. THESE PRACTICES ARE USED TO REDUCE THE RISKS ASSOCIATED WITH HAZARDOUS MATERIALS: - PRODUCTS WILL BE KEPT IN ORIGINAL CONTAINERS UNLESS THEY ARE NOT RESEALABLE; - ORIGINAL LABELS AND MATERIAL SAFETY DATA WILL BE RETAINED; THEY CONTAIN IMPORTANT PRODUCT INFORMATION: - IF SURPLUS PRODUCT MUST BE DISPOSED OF, MANUFACTURER'S OR LOCAL AND STATE RECOMMENDED METHODS FOR PROPER DISPOSAL WILL BE FOLLOWED. 35.6± AC PRODUCT SPECIFIC PRACTICES: THE FOLLOWING PRODUCT SPECIFIC PRACTICES WILL BE FOLLOWED ON SITE: ALL ONSITE VEHICLES WILL BE MONITORED FOR LEAKS AND RECEIVE REGULAR PREVENTATIVE MAINTENANCE TO REDUCE THE CHANCE OF LEAKAGE. PETROLEUM PRODUCTS WILL BE STORED IN 43B - WALPOLE VERY FINE SANDY LOAM, 3-8% SLOPES, VERY STONY TIGHTLY SEALED CONTAINERS WHICH ARE CLEARLY LABELED. ANY ASPHALT SUBSTANCES USED ONSITE WILL BE APPLIED ACCORDING TO THE MANUFACTURER'S RECOMMENDATIONS. FERTILIZERS USED WILL BE APPLIED ONLY IN THE MINIMUM AMOUNTS RECOMMENDED BY THE IMPERVIOUS SURFACE AREA: 0.59± AC MANUFACTURER. ONCE APPLIED, FERTILIZER WILL BE WORKED INTO THE SOIL TO LIMIT EXPOSURE TO STORM WATER. STORAGE WILL BE IN A COVERED SHED. THE CONTENTS OF ANY PARTIALLY USED BAGS OF FERTILIZER WILL BE TRANSFERRED TO A SEALABLE PLASTIC BIN TO AVOID SPILLS. ALL CONTAINERS WILL BE TIGHTLY SEALED AND STORED WHEN NOT REQUIRED FOR USE. EXCESS PAINT WILL NOT BE DISCHARGED TO THE STORM SEWER BUT WILL BE PROPERLY DISPOSED OF ACCORDING TO MANUFACTURER'S INSTRUCTIONS OR STATE AND LOCAL REGULATIONS. LIMESTONE AND 500 LBS PER ACRE OF 10–20–20 FERTILIZER SHALL BE APPLIED. AFTER SEEDING, EXCESS CONCRETE SHALL BE USED IN AREAS DESIGNATED BY THE SITE CONTRACTOR. WASH WATER SHALL BE DISPOSED OF USING BEST MANAGEMENT PRACTICES. BUILDING CONTRACTOR IS RESPONSIBLE FOR REMOVAL OF ALL DRUM WASH WATER ASSOCIATED WITH CONCRETE FOR THE BUILDING PAD. SITE CONTRACTOR TO COORDINATE AND PROVIDE BUILDING CONTRACTOR WITH AN AREA FOR DRUM WASH WATER. IN ADDITION TO THE GOOD HOUSEKEEPING AND MATERIAL MANAGEMENT PRACTICES DISCUSSED IN THE PREVIOUS SECTIONS OF THIS PLAN, THE FOLLOWING PRACTICES WILL BE FOLLOWED FOR SPILL PREVENTION AND CLEANUP: - MANUFACTURER'S RECOMMENDED METHODS FOR SPILL CLEANUP WILL BE CLEARLY POSTED AND SITE PERSONNEL WILL BE MADE AWARE OF THE PROCEDURES AND THE LOCATION OF THE INFORMATION AND CLEANUP SUPPLIES. - MATERIALS AND EQUIPMENT NECESSARY FOR SPILL CLEANUP WILL BE KEPT IN THE MATERIAL STORAGE AREA ONSITE. EQUIPMENT AND MATERIALS WILL INCLUDE BUT NOT BE LIMITED TO BROOMS, DUST PANS, MOPS, RAGS, GLOVES, GOGGLES, KITTY LITTER, SAND, SAWDUST, AND PLASTIC AND METAL TRASH CONTAINERS SPECIFICALLY FOR THIS PURPOSE. - ALL SPILLS WILL BE CLEANED UP IMMEDIATELY AFTER DISCOVERY. - THE SPILL AREA WILL BE KEPT WELL VENTILATED AND PERSONNEL WILL WEAR APPROPRIATE THE CONSTRUCTION AREA. PROTECTIVE CLOTHING TO PREVENT INJURY FROM CONTACT WITH A HAZARDOUS SUBSTANCE. - SPILLS OF TOXIC OR HAZARDOUS MATERIAL WILL BE REPORTED TO THE APPROPRIATE STATE OR LOCAL GOVERNMENT AGENCY, REGARDLESS OF SIZE. - THE SPILL PREVENTION PLAN WILL BE ADJUSTED TO INCLUDE MEASURES TO PREVENT THIS TYPE OF SPILL FROM REOCCURRING AND HOW TO CLEAN UP THE SPILL IF THERE IS ANOTHER ONE. A DESCRIPTION OF THE SPILL, WHAT CAUSED IT, AND THE CLEANUP MEASURES WILL ALSO BE INCLUDED. - THE SITE SUPERINTENDENT RESPONSIBLE FOR THE DAY-TO-DAY SITE OPERATIONS, WILL BE THE SPILL PREVENTION AND CLEANUP COORDINATOR. THEY WILL DESIGNATE AT LEAST THREE OTHER SITE PERSONNEL WHO WILL EACH RECEIVE SPILL PREVENTION AND CLEANUP TRAINING. THESE INDIVIDUALS WILL EACH BECOME RESPONSIBLE FOR A PARTICULAR PHASE OF PREVENTION AND CLEANUP. THE NAMES OF RESPONSIBLE SPILL PERSONNEL WILL BE POSTED IN THE MATERIAL

1. THE OWNER, IN CONJUNCTION WITH THE CONTRACTOR (OPERATORS), MUST OBTAIN A CONSTRUCTION GENERAL PERMIT (CGP) FOR LARGE CONSTRUCTION ACTIVITIES (FIVE OR MORE ACRES) OR SMALL CONSTRUCTION ACTIVITIES (GREATER THAN ONE ACRE BUT LESS THAN FIVE ACRES) FROM THE ENVIRONMENTAL PROTECTION AGENCY (EPA). AS PART OF THE CGP, A STORMWATER NOTICE OF INTENT (NOI) MUST BE SUBMITTED TO THE EPA AT LEAST 7 DAYS PRIOR TO COMMENCING CONSTRUCTION. THE NOI MUST BE SUBMITTED TO STORM WATER NOTICE OF INTENT (4203M), USEPA, 1200 PENNSYLVANIA 2. THE CGP OUTLINES A SET OF PROVISIONS MANDATING THE OWNER AND CONTRACTOR TO COMPLY WITH THE REQUIREMENTS OF THE NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES) STORM WATER REGULATIONS, INCLUDING, BUT NOT LIMITED TO, STORM WATER POLLUTION PREVENTION PLANS GUIDELINÉS, ETC. PLEASE CONTACT USEPA OFFICE OF WASTEWATER MANAGEMENT AT 202–564–9545 OR AT WWW.EPA.GOV/NPDES/STORMWATER FOR ADDITIONAL INFORMATION. FOR FURTHER ASSISTANCE, 2. TOTAL SITE AREA: 3. SOILS SHOWN ARE FROM THE SOIL SURVEY OF ROCKINGHAM COUNTY, NH, EASTERN PART, 4. STORM WATER DRAINAGE SYSTEM IS SHOWN ON THE PLAN. SEE GRADING & DRAINAGE PLAN FOR RIM, TEMPORARY STABILIZATION - TOPSOIL STOCKPILES AND DISTURBED AREAS OF THE CONSTRUCTION SITE THAT WILL NOT BE REDISTURBED FOR 14 DAYS OR MORE MUST BE STABILIZED BY THE 14TH DAY AFTER THE LAST DISTURBANCE. THE TEMPORARY SEED SHALL BE ANNUAL RYE APPLIED AT THE RATE OF 1.1 LBS PER 1,000 SF. PRIOR TO SEEDING, A MINIMUM OF 2 TONS PER ACRE OF AGRICULTURAL EACH AREA SHALL BE MULCHED WITH 1.5 TONS PER ACRE OF HAY MULCH. MULCH TO BE ANCHORED IN PLACE WHERE NECESSARY. AREAS OF THE SITE THAT WILL BE PAVED WILL BE TEMPORARILY STABILIZED BY APPLYING GEOTEXTILES AND A STONE SUB-BASE UNTIL BITUMINOUS PAVEMENT CAN BE APPLIED. CALCIUM CHLORIDE SHALL BE USED FOR DUST CONTROL IF NEEDED. PERMANENT STABILIZATION - DISTURBED PORTIONS OF THE SITE WHERE CONSTRUCTION ACTIVITIES PERMANENTLY CEASES SHALL BE STABILIZED WITH PERMANENT SEED NO LATER THAN 3 DAYS AFTER THE LAST CONSTRUCTION ACTIVITY. THE PERMANENT SEED MIX SHALL CONSIST OF 0.45 LBS/1,000 SF TALL FESCUE, 0.20 LBS/1,000 SF CREEPING RED FESCUE, AND 0.20 LBS/1,000 SF BIRDSFOOT TREFOIL. PRIOR TO SEEDING, A MINIMUM OF 2 TONS PER ACRE OF AGRICULTURAL LIMESTONE AND 500 LBS PER ACRE IF 10-20-20 FERTILIZER SHALL BE APPLIED. AFTER SEEDING, EACH AREA SHALL BE MULCHED WITH 1.5 TONS PER ACRE OF HAY MULCH. MULCH TO BE ANCHORED IN PLACE WHERE NECESSARY. SILT SOCK - WILL BE CONSTRUCTED AROUND THE PERIMETER OF THE DISTURBED AREAS AND WILL DELINEATE THE LIMITS OF WORK FOR THE PROPOSED CONSTRUCTION. THE SILT SOCK WILL BE INSTALLED BY OTHERS. POSTS SHALL BE USED WITH AT LEAST 6" OF THE POST BURIED BELOW THE GROUND SURFACE TO PREVENT THE SILT SOCK FROM FORMING GAPS NEAR THE GROUND SURFACE. RUNOFF WILL FLOW THROUGH THE OPENINGS IN THE SILT SOCK WHILE RETAINING THE SEDIMENT WITHIN STABILIZED CONSTRUCTION ENTRANCE - WILL BE INSTALLED IN ACCORDANCE WITH THE DETAIL AT THE ENTRANCE TO THE CONSTRUCTION SITE TO HELP REDUCE VEHICLE TRACKING OF SEDIMENTS OFF THE SITE. THE STABILIZED ENTRANCE WILL BE 20'-WIDE AND FLARE AT THE ENTRANCE TO THE PAVED ROAD AND HAVE A DEPTH OF 12" OF STONE. THE STABILIZED ENTRANCE SHALL BE MAINTAINED UNTIL THE REMAINDER OF THE CONSTRUCTION SITE HAS BEEN FULLY STABILIZED. THE PAVED STREET ADJACENT TO THE SITE SHALL BE SWEPT ON A WEEKLY BASIS TO REMOVE EXCESS MUD AND DIRT FROM BEING TRACKED FROM THE SITE. TRUCKS HAULING MATERIAL TO AND/OR FROM THE SITE SHALL BE COVERED WITH A TARPAULIN.

6. STRUCTURAL PRACTICES FOR EROSION AND SEDIMENTATION CONTROL

BLANKET SLOPE PROTECTION - SHALL BE INSTALLED ON ALL 2:1 SLOPES OR STEEPER ON SITE. ANCHOR THE TOP OF THE BLANKET BY ANCHORING THE BLANKET IN A 6" DEEP TRENCH. BACKFILL AND COMPACT TRENCH AFTER STAPLING. ROLL THE BLANKET IN THE DIRECTION OF STORM WATER FLOW. WHERE 2 OR MORE STRIPS OF BLANKET ARE REQUIRED, A MINIMUM OF 4" OF OVERLAP SHALL BE PROVIDED.

STONE CHECK DAMS - WILL BE INSTALLED IN EXISTING AND PROPOSED GRASS SWALES TO REDUCE THE VELOCITY OF CONCENTRATED STORM WATER FLOWS AND PREVENT EROSION OF THE SWALE.

. STORM WATER MANAGEMENT

STORM WATER DRAINAGE FOR DEVELOPED AREAS WILL BE COLLECTED BY AN OPEN DRAINAGE SYSTEM. APPROXIMATELY 7.2± ACRES OF THE 36.5± ACRE SITE WILL REMAIN IN ITS CURRENT STATE. WHEN CONSTRUCTION IS COMPLETE THE MAJORITY OF THE SITE WILL DRAIN TO A BIO-RETENTION AREA.

ALL CONSTRUCTION DEBRIS AND WASTE MATERIALS SHALL BE COLLECTED AND STORED IN SECURE DUMPSTERS OR APPROVED ENCLOSURE AND REMOVED FROM THE SITE ON A WEEKLY BASIS. NO CONSTRUCTION WASTE SHALL BE BURIED ON SITE. PORTABLE TOILET SANITARY WASTE FACILITIES WILL BE PROVIDED DURING CONSTRUCTION AND MAINTAINED/DISPOSED OF ON A REGULAR BASIS IN ACCORDANCE WITH TOWN AND STATE REGULATIONS.

A LIST OF CONSTRUCTION ITEMS AND OTHER PRODUCTS USED ON THIS PROJECT SHALL BE KEPT ON RECORD WITH THIS PLAN ONSITE. ALL CHEMICALS, PETROLEUM PRODUCTS AND OTHER MATERIALS USED DURING CONSTRUCTION SHALL BE STORED IN A SECURE AREA, AND PRECAUTIONS USED TO PREVENT POTENTIAL SOURCES OF CONTAMINATION OR POLLUTION. ANY SPILL OF THESE TYPES OF SUBSTANCES SHALL BE CLEANED UP AND DISPOSED OF IN A LEGAL MANNER AS SPECIFIED BY STATE REGULATIONS AND THE MANUFACTURER. ANY SPILL IN AMOUNTS EQUAL TO OR EXCEEDING REPORTABLE QUANTITY AS DEFINED BY THE EPA SHALL TAKE THE FOLLOWING STEPS: - NOTIFY THE NATIONAL RESPONSE CENTER IMMEDIATELY AT (888) 424-8802; IN WASHINGTON, D.C.,

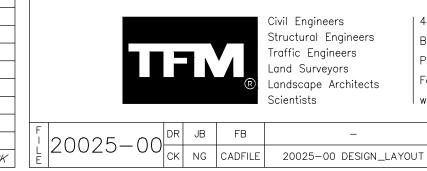
CALL (202) 426-2675.

- WITHIN 14 DAYS, SUBMIT A WRITTEN DESCRIPTION OF THE RELEASE TO THE EPA REGIONAL OFFICE PROVIDING THE DATE AND CIRCUMSTANCES OF THE RELEASE AND THE STEPS TO BE TAKEN TO PREVENT ANOTHER RELEASE - MODIFY THE POLLUTION PREVENTION PLAN TO INCLUDE THE INFORMATION LISTED ABOVE

REV	DA TE	DESCRIP TION
		•

STORAGE AREA AND IN THE OFFICE TRAILER ONSITE. 11. THE CONTRACTOR IS RESPONSIBLE TO MAINTAIN RECORDS OF CONSTRUCTION ACTIVITIES, INCLUDING DATES OF MAJOR GRADING ACTIVITIES, DATES WHEN CONSTRUCTION ACTIVITIES HAVE TEMPORARILY CEASED ON A PORTION OF THE SITE, DATES WHEN WORK IS COMPLETED ON A PORTION OF THE SITE AND DATES WHEN STABILIZATION MEASURES ARE INITIATED ONSITE.

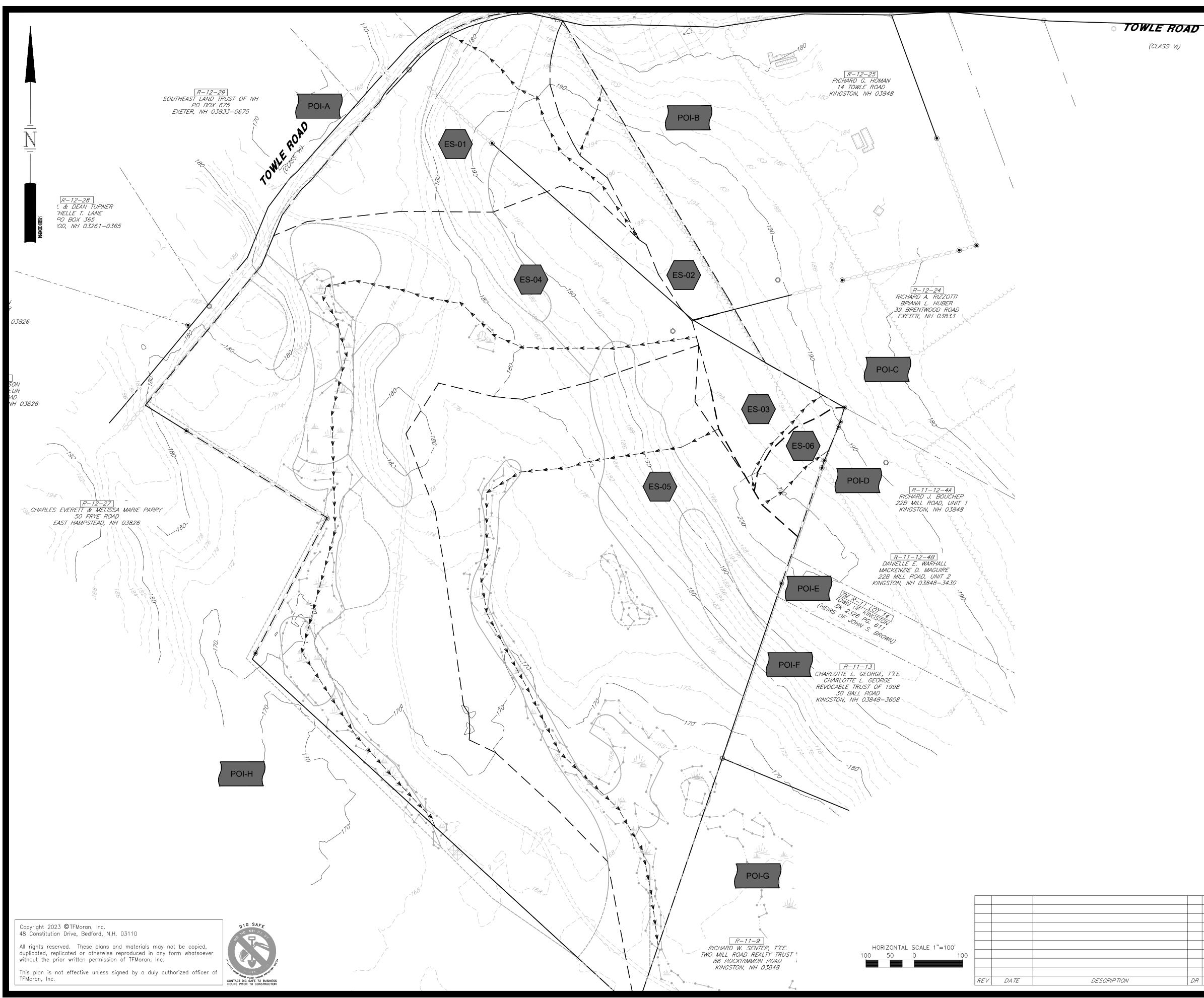
12. THE CONTRACTOR SHALL PERFORM INSPECTIONS OR HAVE A CONSULTING ENGINEER PERFORM INSPECTIONS EVERY SEVEN (7) DAYS AND WITHIN 24 HOURS AFTER A STORM OF 0.5" OR GREATER. INSPECTIONS REPORTS ARE TO BE KEPT ON FILE AT THE SITE WITH THIS PLAN. MAINTENANCE OR MODIFICATION SHALL BE IMPLEMENTED AND ADDED TO THE PLAN AS RECOMMENDED BY THE QUALIFIED INSPECTOR.


SITE DEVELOPMENT PLANS

STORMWATER MANAGEMENT PLAN UNITIL KINGSTON SOLAR PROJECT **14 & 24 TOWLE ROAD** KINGSTON, NH 03848 PREPARED FOR UNITIL ENERGY SYSTEMS **30 ENERGY WAY**

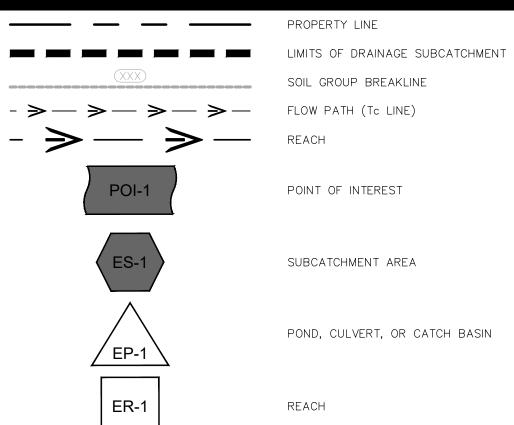
EXETER, NH 03833 SCALE: 1"=100'

JULY 6, 2023



48 Constitution Drive Bedford, NH 03110 Phone (603) 472-4488 Fax (603) 472-9747 www.tfmoran.com

C-12


TAX MAP R-11-9

PART 9

(CLASS VI)

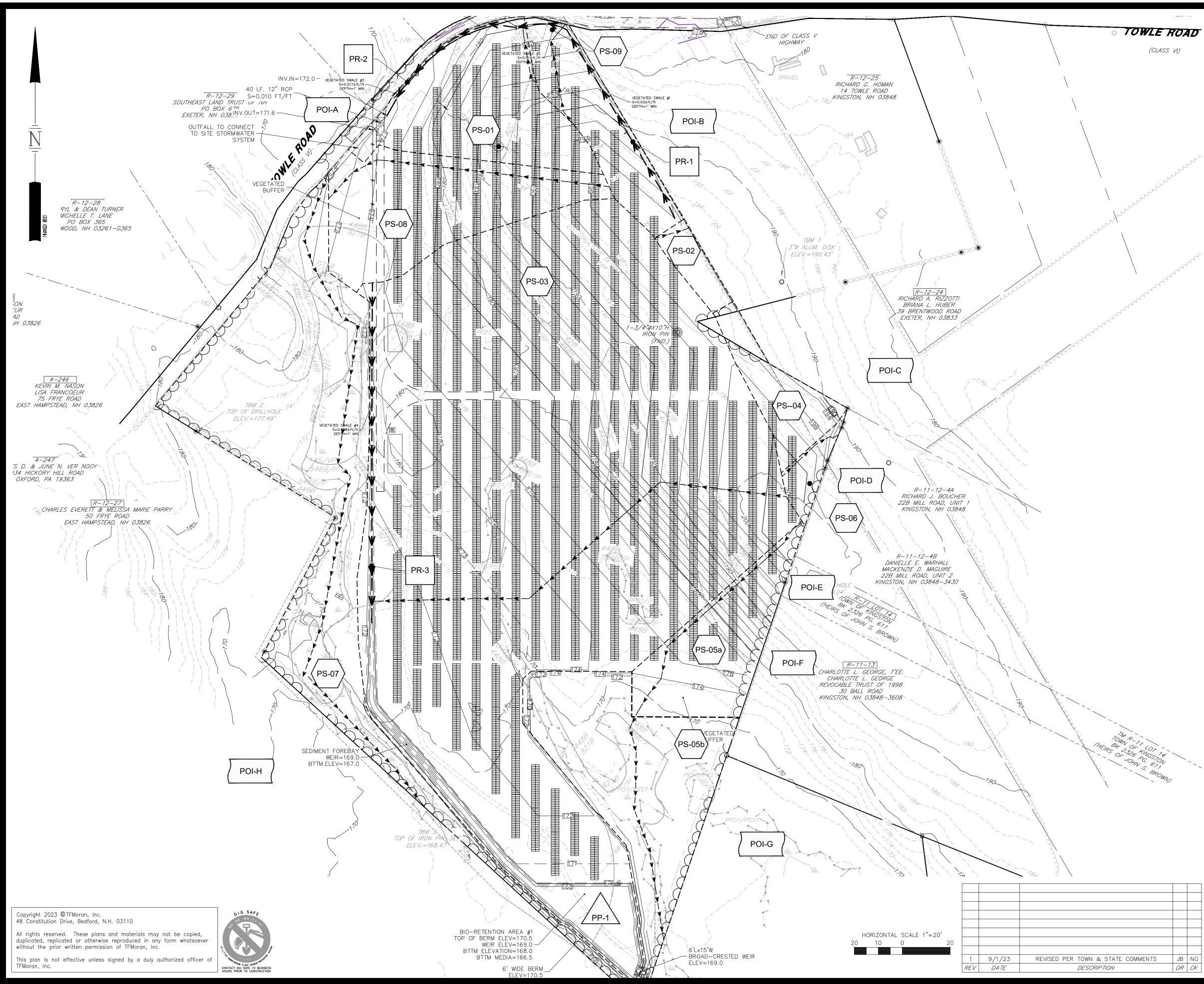
LEGEND

NOTES

THE SITE SPECIFIC SOIL MAP WAS PREPARED ON JUNE 4, 2023 BY BRUCE A. GILDAY, NH CSS NO. 012, OF BAG LAND CONSULTANTS.


SOIL PHASE LEGEND (PERCENT)										
В	B C D E									
0-8%	9-15%	16-25%	>25%							

SOIL LEGEND (PER SITE SPECIFIC SOIL SURVEY)							
SYMBOL DESCRIPTION HYDROLOGIC SOIL GROUP DRAINAG CLASS							
42	CANTON	В	WELL DRAINED				
448	SCITUATE	С	MODERATELY WELL DRAINED				
921	NEWFIELDS	В	SOMEWHAT POORLY DRAINED				
546B/P	WALPOLE	С	POORLY DRAINED				
115/VP	SCARBORO	D	VERY POORLY DRAINED				



DR CK

Phone (603) 472-4488 Fax (603) 472-9747 www.tfmoran.com

DA - 01

----- PROPERTY LINE LIMITS OF DRAINAGE SUBCATCHMENT $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ ____ POI-1 PS-1 / PP-1 PR-1

LEGEND

SOIL GROUP BREAKLINE ➤— FLOW PATH (Tc LINE) REACH

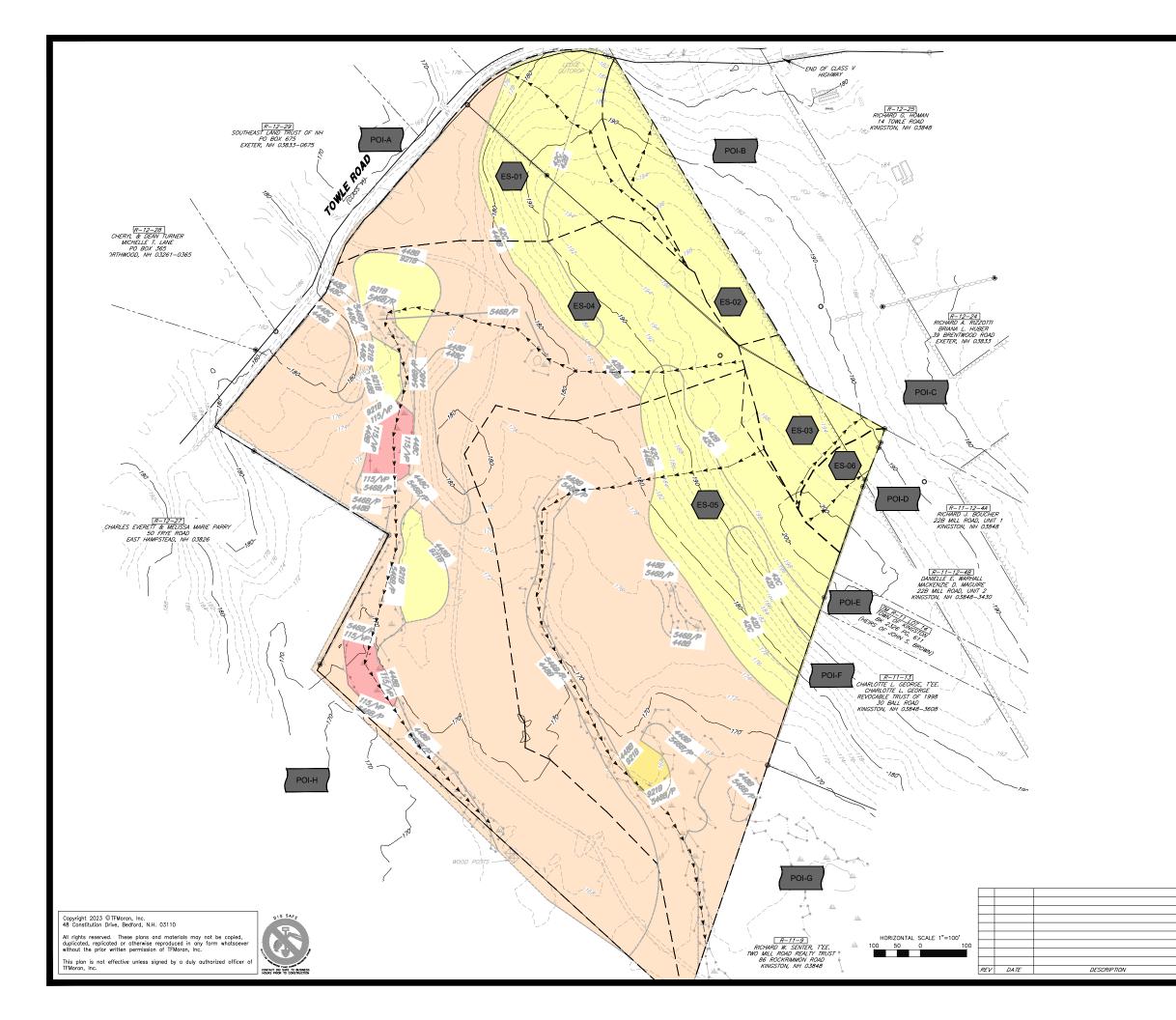
POINT OF INTEREST

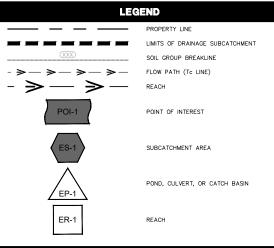
SUBCATCHMENT AREA

POND, CULVERT, OR CATCH BASIN

REACH

NOTES


THE SITE SPECIFIC SOIL MAP WAS PREPARED ON JUNE 4, 2023 BY BRUCE A. GILDAY, NH CSS NO. 012, OF BAG LAND CONSULTANTS.


SOIL PHASE LEGEND (PERCENT)										
В	B C D E									
0-8% 9-15% 16-25% >25%										

SOIL LEGEND (PER SITE SPECIFIC SOIL SURVEY)								
SYMBOL DESCRIPTION HYDROLOGIC DRAINAGE SOIL GROUP CLASS CLASS<								
42	CANTON	В	WELL DRAINED					
448	SCITUATE	С	MODERATELY WELL DRAINED					
921	NEWFIELDS	В	SOMEWHAT POORLY DRAINED					
546B/P	WALPOLE	С	POORLY DRAINED					
115/VP	SCARBORO	D	VERY POORLY DRAINED					

SITE DEVELOPMENT PLANS TAX MAP R-11-9 POST-DEVELOPMENT DRAINAGE PLAN UNITIL KINGSTON SOLAR PROJECT 14 & 24 TOWLE ROAD KINGSTON, NH 03848 PREPARED FOR UNITIL ENERGY SYSTEMS **30 ENERGY WAY** EXETER, NH 03833 SCALE: 1"=100' JULY 6, 2023 Civil Engineers | 48 Constitution Drive Structural Engineers Bedford, NH 03110 Traffic Engineers Phone (603) 472-4488 Land Surveyors Fax (603) 472-9747 Landscape Architects www.tfmoran.com Scientists 20025-00 DA-02 20025-00 DRAINAGE

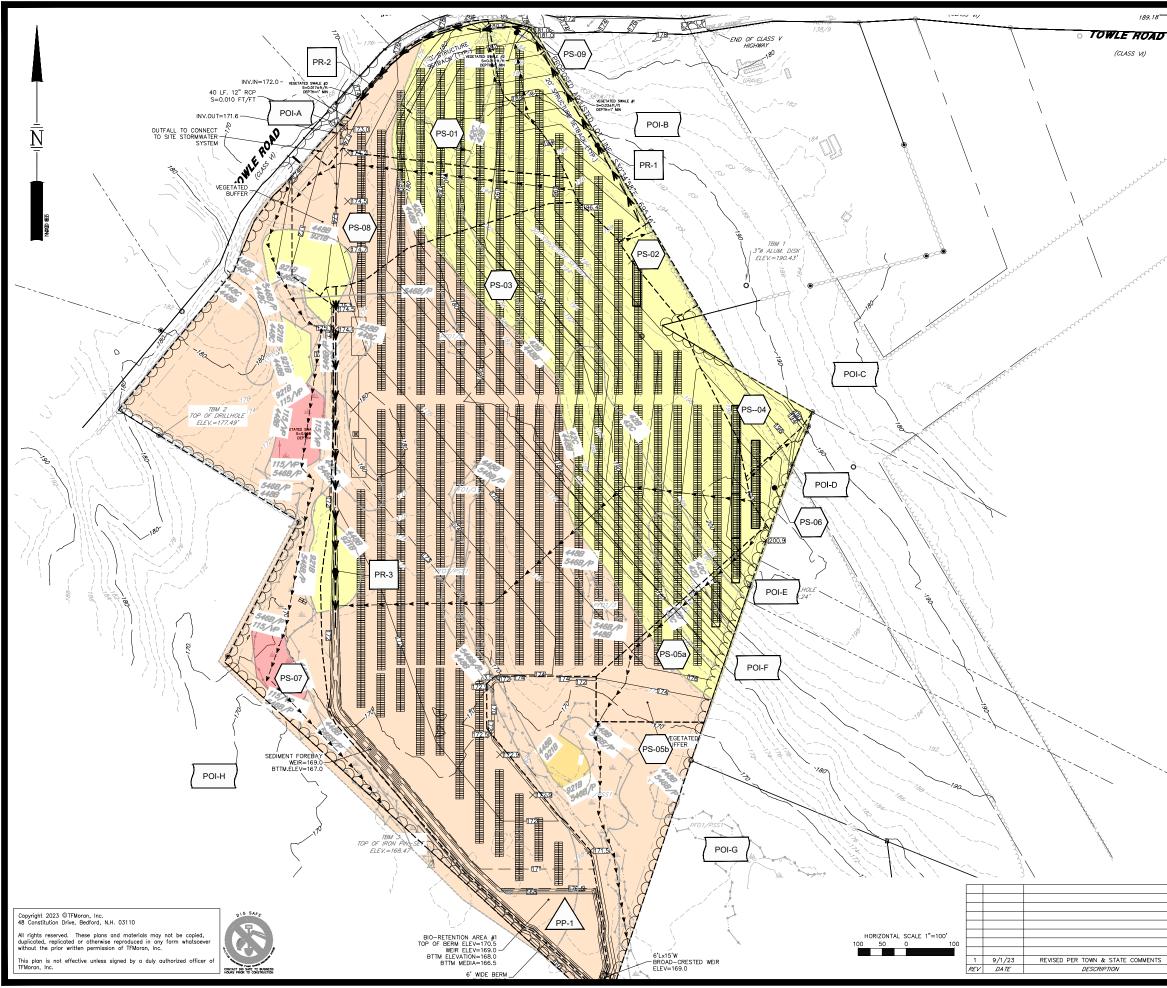
NOTES

 THE SITE SPECIFIC SOIL MAP WAS PREPARED ON JUNE 4, 2023 BY BRUCE A. GILDAY, NH CSS NO. 012, OF BAG LAND CONSULTANTS.

SOIL PHASE LEGEND (PERCENT)								
B C D E								
0-8% 9-15% 16-25% >25%								

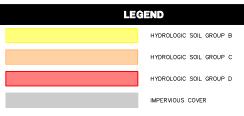
SOIL LEGEND (PER SITE SPECIFIC SOIL SURVEY)							
SYMBOL DESCRIPTION HYDROLOGIC DRAINAGE SOIL GROUP CLASS							
42	CANTON	В	WELL DRAINED				
448	SCITUATE	с	MODERATELY WELL DRAINED				
921	NEWFIELDS	в	SOMEWHAT POORLY DRAINED				
546B/P	WALPOLE	с	POORLY DRAINED				
115/VP	SCARBORO	D	VERY POORLY DRAINED				

SITE DEVELOPMENT PLANS TAX MAP R12 LOTS 25 & 26 PRE-DEVELOPMENT COLORED SOILS PLAN UNITIL KINGSTON SOLAR PROJECT 14 & 24 TOWLE ROAD KINGSTON, NH 03848 PREPARED FOR UNITIL ENERGY SYSTEMS 30 ENERGY WAY EXETER, NH 03833 SCALE: 1"-100' JULY 6, 2023


 Civil Engineers
 48 Constitution Drive

 Bedford, NH 03110
 Bedford, NH 03110

 Charles
 Constitution Drive


 Constitution
 Constitution

 Constitution
 Constitution</

189.18

LEGEND PROPERTY LINE LIMITS OF DRAINAGE SUBCATCHMENT SOIL GROUP BREAKLINE $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$ FLOW PATH (Tc LINE) - ≥ - > \rightarrow REACH ____ POI-1 POINT OF INTEREST PS-1 SUBCATCHMENT AREA POND, CULVERT, OR CATCH BASIN PP-1 PR-1 REACH

NOTES

THE SITE SPECIFIC SOIL MAP WAS PREPARED ON JUNE 4, 2023 BY BRUCE A. GILDAY, NH CSS NO. 012, OF BAG LAND CONSULTANTS.

SOIL PHASE LEGEND (PERCENT)									
B C D E									
0-8% 9-15% 16-25% >25%									
•	(PERC	(PERCENT)							

SOIL LEGEND (PER SITE SPECIFIC SOIL SURVEY)						
SYMBOL	DRAINAGE CLASS					
42	CANTON	B WELL DRA				
448	SCITUATE	с	MODERATELY WELL DRAINED			
921	NEWFIELDS	в	SOMEWHAT POORLY DRAINED			
546B/P	WALPOLE	с	POORLY DRAINED			
115/VP	SCARBORO	D	VERY POORLY DRAINED			

SITE DEVELOPMENT PLANS TAX MAP R-11-9 POST-DEVELOPMENT COLORED SOILS PLAN UNITIL KINGSTON SOLAR PROJECT 14 & 24 TOWLE ROAD KINGSTON, NH 03848 PREPARED FOR UNITIL ENERGY SYSTEMS 30 ENERGY WAY EXETER, NH 03833

SCALE: 1"=100'

JULY 6, 2023

					1	Civil Engineers Structural Engineers Traffic Engineers Land Surveyors Landscape Architects Scientists	Bedf Phor Fax	Constitution Drive ord, NH 03110 ne (603) 472–4488 (603) 472–9747 tfmoran.com
JB	NG	F		JB	FB	-		HSG-02
	СК	E 20025-	ССК	NG	CADFILE	20025-00 DRAINAGE	5	H3G-02
	JB		JB NG DR CK	JB NG - 20025-00	<u>」^B NG 20025−00</u>		JB NG	JB NG F -

